• Title/Summary/Keyword: photolithography

Search Result 508, Processing Time 0.033 seconds

Fabrication of High Aspect Ratio 100nm-scale Nickel Stamper Using E-beam Lithography for the Injection molding of Nano Grating Patterns (전자빔과 무반사층이 없는 크롬 마스크를 이용한 나노그레이팅 사출성형용 고종횡비 100nm 급 니켈 스템퍼의 제작)

  • Seo, Young-Ho;Choi, Doo-Sun;Lee, Joon-Hyoung;Je, Tae-Jin;Whang, Kyung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.978-982
    • /
    • 2004
  • We present high aspect ratio 100nm-scale nickel stamper using e-beam lithography process and Cr/Qz mask for the injection molding process of nano grating patterns. Conventional photolithography blank mask (CrON/Cr/Qz) consists of quartz substrate, Cr layer of UV protection and CrON of anti-reflection layer. We have used Cr/Qz blank mask without anti-reflection layer of CrON which is non-conductive material and ebeam lithography process in order to simplify the nickel electroplating process. In nickel electroplating process, we have used Cr layer of UV protection as seed layer of nickel electroplating. Fabrication conditions of photolithography mask using e-beam lithography are optimized with respect to CrON/Cr/Qz blank mask. In this paper, we have optimized e-beam lithography process using Cr/Qz blank mask and fabricated nickel stamper using Cr seed layer. CrON/Cr/Qz blank mask and Cr/Qz blank mask require optimal e-beam dosage of $10.0{\mu}C/cm^2$ and $8.5{\mu}C/cm^2$, respectively. Finally, we have fabricated $116nm{\pm}6nm-width$ and $240nm{\pm}20nm-height$ nickel grating stamper for the injection molding pattern.

  • PDF

Microfluidic Array for Simultaneous Detection of Antigen-antibody Bindings (항원-항체 결합의 동시 검출을 위한 미세 유체 어레이)

  • Bae, Young-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.102-107
    • /
    • 2011
  • In this paper, a microfluidic array biochip for simultaneously detecting multiple antigen-antibody bindings was designed and implemented. The biochip has the single channel in which microreaction chambers are serially connected, and the antibody-coated microbeads are packed in each microreaction chamber. In addition, the weir structure was fabricated in the microchannel using the gray-scale photolithography in order to trap the microbeads in the microreaction chamber. Three kinds of antibodies were chosen, and the antibodies were immobilized onto the microbeads by the streptavidin-biotin conjugation. In the experiment, as the fluorescence-labeled antigens were injected into the microchannel, the antigen-antibody bindings were completed in 10 minutes. When the solution with multiple antigens was injected into the microchannel, it was observed that the fluorescence intensity increased in only the corresponding microreaction chambers with few non-specific binding. The microfluidic array biochip implemented in this study provides, even with the consumption of tiny amount of sample and fast reaction time to simultaneously detect multiple immunoreactions.

Fabrication and Characteristics of X-ray Position Detection Sensor (방사선 위치 검출센서의 제작 및 특성)

  • Park, Hyung-Jun;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.535-540
    • /
    • 2015
  • A microstrip gas chamber (MSGC), applied to digital radiography system, was designed and constructed. The microstrip electrodes were fabricated with Chrome(Cr.). by photolithography process on Silicon(Si) wafer and glass substrate. The width of anode and cathode electrodes was $10{\mu}m$, and $290{\mu}m$, respectively. The distance of the electrodes was $100{\mu}m$, and the active area was $50{\times}50mm^2$. And the number of anode was 80. The microstrip electrodes were damaged when discharges occurred over the 600 V of anode voltage. As the result of experiments. It detected the typical output signals of the pulse width, 20 ns, under the condition that the detecting gas was Ar(90%) + $CH_4$(10%), X-ray tube voltage was 42 kV, and tube current was 1 mA.

Characteristics of the Ceramic Filter Using $0.05Pb(Al_{2/3}W_{1/3})O_3-0.95Pb(Zr_{0.52}Ti_{0.48}O_3$Ceramic System ($0.05Pb(Al_{2/3}W_{1/3})O_3-0.95Pb(Zr_{0.52}Ti_{0.48})O_3$계를 이용한 세라믹 필터 특성)

  • 김남진;윤석진;유광수;김현재;정형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.71-76
    • /
    • 1992
  • Piezoceramic filters were fabricated by adding $MnO_2 and FeZ0_3$ to the $0.05Pb(Al_{2/3}W_{1/3})O_3-0.95Pb(Zr_{0.52}Ti0.48)O_3$ system using photolithography method. As the amounts of $MnO_2$ increased, the electro-mechanical coupling factor(Kp) decresed. On the other hand, for $Fe_2O_3$ added samples, Kp was 57%, but mechanical quality factor(Qm) showed relatively low value. The passband widths were 155kHz for 0.3wt % $MnO_2$ addition and 260kHz for 0.1 wt % $Fe_2O_3$ addition, and were inversely propotional to Qm values. Group delay time characteristics showed Gausian for $MnO_2$ additions and Butterworth for$Fe_2O_3$ additions.

  • PDF

A Study on the Formation of Detection Electrode for the IED Removal Robot by Using A Photosensitive CNT Paste (감광성 CNT 페이스트를 이용한 IED 폭발물 제거로봇 탐지전극 형성에 관한 연구)

  • Kwon, Hye Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.231-237
    • /
    • 2018
  • In this study, two important requirements for the home production of a robot to detect and remove improvised explosive devices (IEDs) are presented in terms of the total cost for robot system development and the performance improvement of the mine detection technology. Firstly, cost analyses were performed in order to provide a reasonable solution following an engineering estimate method. As a result, the total cost for a mass production system without the mine detection system was estimated to be approximately 396 million won. For the case including the mine detection system, the total cost was estimated to be approximately 411 million won, in which labor costs and overhead charges were slightly increased and the material costs for the mine detection system were negligible. Secondly, a method for fabricating the carbon nanotube (CNT) based gas detection sensor was studied. The detection electrodes were formed by a photolithography process using a photosensitive CNT paste. As a result, this method was shown to be a scalable and expandable technology for producing excellent mine detection sensors. In particular, it was found that surface treatments by using adhesive taping or ion beam bombardment methods are effective for exposing the CNTs to the ambient air environment. Fowler-Nordheim (F-N) plots were obtained from the electron-emission characteristics of the surface treated CNT paste. The F-N plot suggests that sufficient electrons are available for transport between CNT surfaces and chemical molecules, which will make an effective chemiresistive sensor for the advanced IED detection system.

Types & Characteristics of Chemical Substances used in the LCD Panel Manufacturing Process (LCD 제조공정에서 사용되는 화학물질의 종류 및 특성)

  • Park, Seung-Hyun;Park, Hae Dong;Ro, Jiwon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.310-321
    • /
    • 2019
  • Objectives: The purpose of this study was to investigate types and characteristics of chemical substances used in LCD(Liquid crystal display) panel manufacturing process. Methods: The LCD panel manufacturing process is divided into the fabrication(fab) process and module process. The use of chemical substances by process was investigated at four fab processes and two module processes at two domestic TFT-LCD(Thin film transistor-Liquid crystal display) panel manufacturing sites. Results: LCD panels are manufactured through various unit processes such as sputtering, chemical vapor deposition(CVD), etching, and photolithography, and a range of chemicals are used in each process. Metal target materials including copper, aluminum, and indium tin oxide are used in the sputtering process, and gaseous materials such as phosphine, silane, and chlorine are used in CVD and dry etching processes. Inorganic acids such as hydrofluoric acid, nitric acid and sulfuric acid are used in wet etching process, and photoresist and developer are used in photolithography process. Chemical substances for the alignment of liquid crystal, such as polyimides, liquid crystals, and sealants are used in a liquid crystal process. Adhesives and hardeners for adhesion of driver IC and printed circuit board(PCB) to the LCD panel are used in the module process. Conclusions: LCD panels are produced through dozens of unit processes using various types of chemical substances in clean room facilities. Hazardous substances such as organic solvents, reactive gases, irritants, and toxic substances are used in the manufacturing processes, but periodic workplace monitoring applies only to certain chemical substances by law. Therefore, efforts should be made to minimize worker exposure to chemical substances used in LCD panel manufacturing process.

A CPW-fed Small Monopole Antenna for 5.1~5.8 GHz WLAN (5.1~5.8 GHz 무선랜용 CPW 급전 소형 모노폴 안테나)

  • Choi, In-Tae;Shin, Ho-Sub
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1659-1665
    • /
    • 2019
  • In this paper, a novel design of a compact printed monopole antenna for wireless local area network (WLAN) applications is investigated. The radiator with a patch of different line width and step-shaped ground planes is used to reduce the antenna size. The size of the antenna is 16 × 17 × 1 ㎣ and is fabricated with a photolithography technique. The simulated and measured results agree well. The resonant frequency of the investigated antenna is about 5.2 GHz and can cover an impedance bandwidth of 1 GHz for the measurement result. In addition, we presented the measured radiation pattern, presented the gain and efficiency measured in the required WLAN 5 GHz frequency band (5.15-5.825 GHz), and confirmed that it can be used as a 5 GHz band WLAN antenna. The investigated antenna has a small size, light weight, low cost, omni-directional radiation pattern, high gain, and high efficiency.

Rational Design and Facile Fabrication of Tunable Nanostructures towards Biomedical Applications

  • Yu, Eun-A;Choe, Jong-Ho;Park, Gyu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.105.2-105.2
    • /
    • 2016
  • For the rational design and facile fabrication of novel nanostructures, we present a new approach to generating arrays of three-dimensionally tunable nanostructures by exploiting light-matter interaction. To create controlled three-dimensional (3D) nanostructures, we utilize the 3D spatial distribution of light, induced by the light-matter interaction, within the matter to be patterned. As a systematic approach, we establish 3D modeling that integrates the physical and chemical effects of the photolithographic process. Based on a comprehensive analysis of structural formation process and nanoscale features through this modeling, we are able to realize three-dimensionally tunable nanostructures using facile photolithographic process. Here we first demonstrate the arrays of three-dimensionally controlled, stacked nanostructures with nanoscale, tunable layers. We expect that the promising strategy would open new opportunities to produce the arrays of tunable 3D nanostructures using more accessible and facile fabrication process for various biomedical applications ranging from biosensors to drug delivery devices.

  • PDF

Removal of photoresist residue on Cu foil for synthesis of graphene

  • Jeong, Dae-Seong;Yun, Hye-Ju;Lee, Geon-Hui;Sim, Ji-Ni;Lee, Jeong-O;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.367.2-367.2
    • /
    • 2016
  • 그 동안 열화학 기상 증착법으로 고결정의 그래핀을 합성하는 연구가 많이 진행되었다. 더불어 그래핀을 소자로 이용하기 위해서는 합성하는 과정에서 그래핀의 모양 및 형태를 제어하는 방법이 필요하기 때문에 이와 관련된 연구들 또한 진행되었다. 일반적으로 그래핀의 모양은 촉매의 모양에 의존하기 때문에 촉매 금속의 패터닝에 관심이 집중되었고, 보다 작은 크기의 구조를 완성하기 위해 포토리소그래피(photolithography)법을 이용하는 것이 보편화 되었다. 본 연구에서는 촉매 금속을 이용하여 그래핀을 합성시, 촉매 표면에 잔여하는 유기물(포토리소공정으로 인해 발생하는 잔여물)이 열화학 기상 증착법으로 그래핀을 합성하는 방법에 문제를 야기한다는 것을 확인하였다. 이를 해결하기 위해 플라즈마를 이용하여 잔여 유기물을 제거하였고, 그에 따라 합성된 그래핀의 결정성이 향상되는 것을 확인하였다.

  • PDF

Resistance distribution in SFCLs of two different sizes (크기가 다른 박막형 초전도 한류소자에서의 저항 분포)

  • 김혜림;차상도;최효상;황시돌;현옥배;오제명
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.281-284
    • /
    • 2002
  • We investigated quench distribution in SFCLs of two different sizes. YBa$_2$Cu$_3$O$_{7}$ films coated in-situ with a gold layer were patterned into meander lines of two different sizes by photolithography. The limiters were tested with simulated fault currents at various source voltages. The values of resistivity and their time dependence were similar at similar electric fields. The resistivity was nearly uniform except at the edges in both smaller and larger SFCLs. In particular, the resistivity gradient was smaller in larger SFCLs. However, differences between stripe resistivities were larger in larger SFCLs. The results were quantitatively explained with a heat transfer concept.t.

  • PDF