• Title/Summary/Keyword: photoionization models

Search Result 10, Processing Time 0.02 seconds

Photoionization Models for Planetary Nebulae: Comparison of Predictions by NEBULA and CLOUDY

  • Lee, Seong-Jae;Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.29 no.5
    • /
    • pp.419-427
    • /
    • 2008
  • The Galactic planetary nebulae emit many strong recombination and forbidden lines. By analyzing such lines, the physical condition of the planetary nebulae has been inferred using the strategically important diagnostic line ratios. In order to fully understand the physical condition of a planetary nebula and to derive its chemical abundances, the photoionization model codes, e.g., CLOUDY and NEBULA, were employed for an analysis of gaseous nebular spectra. For the well-studied, relatively simple planetary nebula NGC 7026, theoretical investigation was done with about the same input parameters in models. The predictions made by both codes seem to be in good accord. However, the predicted physical conditions, such as electron temperature and density, are slightly different. Especially, the electron temperatures are predicted to be higher in CLOUDY, which may cause a problem in chemical abundance determination. Our analysis shows that the main discordance may occur due to the diffuse radiation.

PHOTOIONIZATION MODELS OF THE WARM IONIZED MEDIUM IN THE GALAXY (우리은하 중온 이온화 매질의 광이온화 모델)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.89-95
    • /
    • 2007
  • The warm ionized medium (WIM) outside classical H II regions is a fundamental gas-phase constituent of the Milky Way and other late-type spiral galaxies, and is traced by faint emission lines at optical wavelengths. We calculate the photoionization models of the WIM in the Galaxy by a stellar UV radiation with the effective temperature 35,000 K assuming not only spherical geometry but also plane parallel geometry, and compare the results with the observed emission line ratios. We also show the dependence of the emission line ratios on various gas-phase abundances. The emergent emission-line ratios are in agreement with the average-values of observed ratios of [S II] ${\lambda}6716/H{\alpha}$, [N II] ${\lambda}6583/H{\alpha}$, [O I] ${\lambda}6300/H{\alpha}$, [O III] ${\lambda}5007/H{\alpha}$, He I ${\lambda}5876/H{\alpha}$. However, their extreme values could not be explained with the photoionization models. It is also shown that the addition of all stellar radiation from the OB stars in the Hipparcos stellar catalog resembles that of an O7-O8 type star.

CHEMICAL ABUNDANCES OF THE SYMBIOTIC NOVA AG PEGASI

  • Kim, Hyouk;Hyung, Siek
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.23-37
    • /
    • 2008
  • The high-resolution optical region spectroscopic data of the symbiotic nova AG Peg secured with the Hamilton Echelle Spectrograph at the Lick Observatory, have been analyzed along with the International Ultraviolet Explorer UV archive data. We measure about 700 line intensities in the wavelengths of 3859 to $9230{\AA}$ and identify about 300 lines. We construct pure photoionization models that represent the observed lines and the physical condition for this symbiotic nova. The spectral energy distribution of the ionizing radiation is adopted from stellar model atmospheres. Based on photoionization models, we derive the elemental abundances; C & N appear to be similar to be smaller than the Galactic planetary nebular value while O is enhanced. Our result is compared with the Contini (1997, 2003) who analyzed the UV region spectral data with the shock + ionization model. The Fe abundance appears to be enhanced than that of normal planetary nebulae, which suggests that AG Peg may have formed in the Galactic disk. The models indicate that the temperature of the central star which excite the shell gas may have fluctuated to an unexpected extent during the years 1998 - 2002.

The narrow emission-line properties of radio-loud AGNs in the SDSS archive

  • Son, Donghoon;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.74.4-75
    • /
    • 2015
  • We investigate the narrow emission-line ratios of 64 radio-loud (log $L_{1.4GHz}$ > 40) AGNs available in the SDSS archive, in order to examine whether there is a systematic difference in the accretion disk condition of radio-loud AGNs compared to radio-quiet AGNs and compact young radio-loud AGNs. The fluxes of narrow-emission lines, [O II], [Ne III], [O III], [O I], [Ar III], are measured for diagnostics. Based on the [O I]/[O III] and [Ar III]/[O III] ratios with photoionization models, we constrain the states of the accretion disk. We will present the results of the emission-line diagnostics.

  • PDF

NEBULAR SPECTRUM OF PU VUL IN 2004

  • Yoo, Kye-Hwa
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.39-47
    • /
    • 2007
  • A high resolution spectrum of PU Vul obtained at Bohyunsan Astronomy Observatory on April 9, 2004 is presented. At this phase, PU Vul was an emission-line star and its continuum was very weak. Emission lines of He II, H I, [Ne IV], [N II], [O III], [Ar V ] and [Fe VII] dominated the spectrum of PU Vul. Many of them exhibited hat-top profiles with strong and multi-peaked emissions on flat-tops of their profiles. Radial velocities for these lines were measured. Origins of the spectral lines are discussed in terms of the wind and the photoionization models.

HIGH DISPERSION OPTICAL SPECTROSCOPY OF PLANETARY NEBULAE

  • HYUNG SIEK
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.273-279
    • /
    • 2004
  • Chemical compositions of planetary nebulae are of interest for a study of the late stage of stellar evolution and for elemental contributions to the interstellar medium of reprocessed elements since possibly a large fraction of stars in 0.8 - 8 $M_{\bigodot}$ range go through this stage. One of the methods for getting chemical composition is a construction of theoretical photoionization models, which involves geometrical complexities and a variety of physical processes. With modelling effort, one can analyze the high dispersion and find the elemental abundances for a number of planetary nebulae. The model also gives the physical parameter of planetary nebula and its central star physical parameter along with the knowledge of its evolutionary status. Two planetary nebulae, NGC 7026 and Hu 1-2, which could have evolved from about one solar mass progenitor stars, showed radically different chemical abundances: the former has high chemical abundances in most elements, while the latter has extremely low abundances. We discuss their significance in the light of the evolution of our Galaxy.

Propagation of the ionizing radiations leaked out of bright H II regions into the diffuse interstellar medium

  • Seon, Kwang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Diffuse ionized gas (DIG or warm ionized medium, WIM) outside traditional regions is a major component of the interstellar medium (ISM) not only in our Galaxy, but also in other galaxies. It is generally believed that major fraction of the Halpha emission in the DIG is provided by OB stars. In the "standard" photoionization models, the Lyman continuum photons escaping from bright H II regions is the dominant source responsible for ionizing the DIG. Then, a complex density structure must provide the low-density paths that allow the photons to traverse kiloparsec scales and ionize the gas far from the OB stars not only at large heights above the midplane, but also within a galactic plane. Here, I present Monte-Carlo models to examine the propagation of the ionizing radiation leaked out of traditional H II regions into the diffuse ISM applied to two face-on spirals M 51 and NGC 7424. We find that the "standard" scenario requires absorption too unrealistically small to be believed, but the obtained scale-height of the galactic disk is consistent with those of edge-on galaxies. We also report that the probability density functions of the Halpha intensities of the DIG and H II regions in the galaxies are log-normal, indicating the turbulence property of the ISM.

  • PDF

Numerical Simulation of the Characteristics of Electrons in Bar-plate DC Negative Corona Discharge Based on a Plasma Chemical Model

  • Liu, Kang-Lin;Liao, Rui-Jin;Zhao, Xue-Tong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1804-1814
    • /
    • 2015
  • In order to explore the characteristics of electrons in DC negative corona discharge, an improved plasma chemical model is presented for the simulation of bar-plate DC corona discharge in dry air. The model is based on plasma hydrodynamics and chemical models in which 12 species are considered. In addition, the photoionization and secondary electron emission effect are also incorporated within the model as well. Based on this model, electron mean energy distribution (EMED), electron density distribution (EDD), generation and dissipation rates of electron at 6 typical time points during a pulse are discussed emphatically. The obtained results show that, the maximum of electron mean energy (EME) appears in field ionization layer which moves towards the anode as time progresses, and its value decreases gradually. Within a pulse process, the electron density (ED) in cathode sheath almost keeps 0, and the maximum of ED appears in the outer layer of the cathode sheath. Among all reactions, R1 and R2 are regarded as the main process of electron proliferation, and R22 plays a dominant role in the dissipation process of electron. The obtained results will provide valuable insights to the physical mechanism of negative corona discharge in air.

CHEMICAL ABUNDANCE ANALYSIS OF M31 AND M33 BASED ON THE SPECTRUM OF HII REGIONS (HII 영역 분광자료를 통한 M31과 M33의 화학원소 결정)

  • HAN SOO RYEON;HYUNG SIEK;PARK HONG-SUH;LEE WOO-BAlK
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.2
    • /
    • pp.67-80
    • /
    • 2001
  • Chemical evolution of galaxies can be understood by studying the spatial distribution of heavy elements. We selected two nearby galaxies, M31 and M33 and investigated spectrum of their HII regions: a) the elec-tron densities have been derived from the [S II] 6717/6731 ratio along with the most recent atomic constants (Hyung & Aller 1996); b) the electron temperatures were determinated from the Pagel's empirical method. Nebula Model (Hyung 1994) has been employed to predict the spectral line intensities which gives the proper chemical abundances. The model would predict the line intensities correctly only when various input parameters such as the effective central star temperatures, gravity log g, model atmosphere as well as the geometry and the nebula physical condition are appropriate. Thus, the determination of chemical abundances of O, S, N of the two nearby galaxies M31 and M33 has been done, which shows a radial dependance of O/H and N/H: decrease with the distance, or increasing electron temperature due to the elemental deficiency. Abundances of M31 appear to be enhanced than those of M33.

  • PDF