DOI QR코드

DOI QR Code

CHEMICAL ABUNDANCES OF THE SYMBIOTIC NOVA AG PEGASI

  • Kim, Hyouk (Jodrell Bank Observatory, Macclesfield) ;
  • Hyung, Siek (School of Science Education (Astronomy), Chungbuk National University)
  • Published : 2008.04.30

Abstract

The high-resolution optical region spectroscopic data of the symbiotic nova AG Peg secured with the Hamilton Echelle Spectrograph at the Lick Observatory, have been analyzed along with the International Ultraviolet Explorer UV archive data. We measure about 700 line intensities in the wavelengths of 3859 to $9230{\AA}$ and identify about 300 lines. We construct pure photoionization models that represent the observed lines and the physical condition for this symbiotic nova. The spectral energy distribution of the ionizing radiation is adopted from stellar model atmospheres. Based on photoionization models, we derive the elemental abundances; C & N appear to be similar to be smaller than the Galactic planetary nebular value while O is enhanced. Our result is compared with the Contini (1997, 2003) who analyzed the UV region spectral data with the shock + ionization model. The Fe abundance appears to be enhanced than that of normal planetary nebulae, which suggests that AG Peg may have formed in the Galactic disk. The models indicate that the temperature of the central star which excite the shell gas may have fluctuated to an unexpected extent during the years 1998 - 2002.

Keywords

References

  1. Altamore, A., & Cassatella, A., 1997, The 1978-1995 variability of the symbiotic star AG Pegasi in the ultraviolet, A&A, 317, 712
  2. Boyarchuk, A. A., 1967, The Nature of AG Pegasi, AZh 44, 12
  3. Contini, M., 1997, The Evolving Structure of AG Pegasi, Emerging from the Interpretation of the Emission Spectra at Different Phases, ApJ, 483, 887 https://doi.org/10.1086/304254
  4. Contini, Marcella, 2003, An analysis of the emission line spectra of AG Pegasi between phases 7.34 and 9.44, MNRAS, 339, 125 https://doi.org/10.1046/j.1365-8711.2003.06153.x
  5. Corliss, C., & Sugar, J., 1979, Energy levels of titanium, Tii through Ti xxii, J. Phys. Chem. Ref. Data, 8, 1 https://doi.org/10.1063/1.555591
  6. Crawford, F. L., McKenna, F. C., Keenan, F. P., Aller, L. H., Feibelman, W. A., & Ryan, S. G., 1999, Line identifications and intensities for the optical spectrum of RR Telescopii between 3180 and $9455\AA$ A&AS, 139, 135 https://doi.org/10.1051/aas:1999385
  7. Eriksson, M., Johansson, S., & Wahlgren, G. M., 2004, Modeling the wind structure of AG Peg by fitting of C IV and N V resonance doublets, A&A, 422, 987 https://doi.org/10.1051/0004-6361:20034086
  8. Eriksson, M., Johansson, S., & Wahlgren, G. M., 2006, The nature of ultraviolet spectra of AG Pegasi and other symbiotic stars: locations, origins, and excitation mechanisms of emission lines, A&A, 451, 157 https://doi.org/10.1051/0004-6361:20053396
  9. Eriksson, M., Johansson, S., Wahlgren, G. M., Veenhuizen, H., Munari, U., & Siviero, A., 2005, Bowen excitation of N III lines in symbiotic stars, A&A, 434, 397 https://doi.org/10.1051/0004-6361:20042174
  10. Eriksson, M., Veenhuizen, H., Wahlgren, G. M., & Johansson, S., 2004, Fe II fluorescence in symbiotic stars, RevMexAA, 21, 132
  11. Ferland, G., 1996, in HAZY, Univ. Kentucky Dept. Phys. Astron. Internal Rep
  12. Herrick, S., 1935, Tables for the reduction of radial velocities to the Sun, Lick Obs. Bull., 17, 85 https://doi.org/10.5479/ADS/bib/1935LicOB.17.85H
  13. Hubeny, I., 1988,A computer program for calculating non-LTE model stellar atmospheres, Computer Phys. Comm., 52, 103 https://doi.org/10.1016/0010-4655(88)90177-4
  14. Hyung, S., 1994, Density contrast shell models for the planetary nebula IC 2165, ApJS, 90, 119 https://doi.org/10.1086/191860
  15. Hyung, S. & Feibelman, W. A., 2004, Optical and IUE Spectra of the Planetary Nebula NGC 7026, ApJ, 614, 745 https://doi.org/10.1086/423660
  16. Hutchings, J. B., Cowley, A. P., & Redman, R. D., 1975, Mass transfer in the symbiotic binary AG Pegasi., ApJ, 201, 404 https://doi.org/10.1086/153900
  17. Iben, I. J. & Tutokov, A. V., 1996, On the Evolution of Symbiotic Stars and Other Binaries with Accreting Degenerate Dwarfs, ApJS, 105, 145 https://doi.org/10.1086/192310
  18. Johansson, S., 1977, Forbidden Transitions of Fe II., Phys. Scr., 15, 183 https://doi.org/10.1088/0031-8949/15/3/005
  19. Jurdana-Sepic, R., & Kotnik-Karuza, D., 2002, Atlas of M7III Spectral features in the optical (Physics Department, University of Rijeka, Croatia)
  20. Kenny, H. T. & Taylor, A. R., 2007, Colliding Winds in Symbiotic Binary Systems. II. Colliding Winds Geometries and Orbital Motion in the Symbiotic Nova AG Pegasi, ApJ, 662, 1231 https://doi.org/10.1086/517902
  21. Kenyon, S. J., Mikolajewska, J., Mikolajewski,, M., Polidan, R. S., & Slovak, M. H., 1993, Evolution of the symbiotic binary system AG Pegasi - The slowest classical nova eruption ever recorded, AJ, 106, 1573 https://doi.org/10.1086/116749
  22. Kenyon, S. J., Proga, D., & Keyes, C. D., 2001, The Continuing Slow Decline of AG Pegasi, AJ, 122, 349 https://doi.org/10.1086/321107
  23. Latham, D. W. & Sternberg, A., 1977, CfA Preprint 827
  24. Lundmark, K., 1921, Mitteilung uber Nova Cygni 1920, Astron. Nachrichten 213, Nr. 5094, 93 https://doi.org/10.1002/asna.19212130604
  25. McKenna, F. C., Keenan, F. P., Hambly, N. C., Allende Prieto, C., Rolleston, W. R. J., Aller, L. H., & Feibelman, W. A., 1997, The Optical Spectral Line List of RR Telescopii, ApJS, 109, 225 https://doi.org/10.1086/312977
  26. Moore, C. E., 1974, in Nat. Bur. Standards 40, Multiplet Table of Astrophysical Interest (Princeton: Princeton Univ. Press)
  27. Moore, C. E., 1993, Tables of Spectra of H, C, N, and ): Atoms and Ions, ed. J. W. Gallagher (London:CRC)
  28. Murset, U., Nussbaumer, H., Schmid, H. M., & Vogel, M., 1991, Temperature and luminosity of hot components in symbiotic stars, A&A, 248, 458
  29. Nussbaumer, H., Schmutz, W., & Vogel, M., 1995, Proof of a Fast Wind in the Symbiotic Nova Ag- Pegasi, A&A, 293, L13
  30. Osterbrock, D. E., Fulbright, J. P., Martel, A. R., Keane, M. J., Trager, S. C., & Basri, G., 1996, Night-Sky High-Resolution Spectral Atlas of OH and O2 Emission Lines for Echelle Spectrograph Wavelength Calibration, PASP, 108, 277 https://doi.org/10.1086/133722
  31. Palmer, B. A. & Engeleman, J. R., 1983, Atlas of the Thorium Spectrum (Los Alamos National Laboratory)
  32. Penston, M. V. & Allen, D. A., 1985, On the ultraviolet spectrum of AG Peg, MNRAS, 212, 939 https://doi.org/10.1093/mnras/212.4.939
  33. Schmutz, W., 1996, Science with the HST-II, ed. F. D. M. Piero Benvenuti, & J. S. Ethan (Baltimore: STScI), 366
  34. Tomov, N. A. & Tomova, M. T., 1992, Radial velocities investigation of symbiotic AG Peg., Izv. Krym. Astrofiz. Obs. 86, 19
  35. Tomov, N. A. & Tomova, M. T., & Raikova, D. V., 1998, The visual line spectrum of AG Pegasi in 1995 A&AS, 129, 479 https://doi.org/10.1051/aas:1998200
  36. Vogel, M. & Nussbaumer, H., 1994, The hot wind in the symbiotic nova AG Pegasi, A&A, 284, 145
  37. Zamanov, R. K. & Tomov, N. A., 1995, AG Pegasi: will accretion begin soon?, The Observatory, 115, 185

Cited by

  1. An Analysis of the Symbiotic Star Z And Line Profile vol.33, pp.7, 2012, https://doi.org/10.5467/JKESS.2012.33.7.608
  2. H α and H β Raman scattering line profiles of the symbiotic star AG Pegasi vol.475, pp.4, 2018, https://doi.org/10.1093/mnras/sty050