• Title/Summary/Keyword: photointermediate

Search Result 2, Processing Time 0.015 seconds

The Effect of S130A Mutant of pharaonis Halorhodopsin on Ability of Chloride Binding and Photocycle

  • Sato, Maki;Kikukawa, Takashi;Araiso, Tsunehisa;Okita, Hirotaka;Shimono, Kazumi;Kamo, Naoki;Demura, Makoto;Nitta, Katsutoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.308-310
    • /
    • 2002
  • Bacteriorhodopsin (bR) and halorhodopsin (hR), which exist in the membrane of Halobacterium salinarum, are light-driven ion pumps. In spite of high similarity of primary and tertiary structures between bR and hR, these membrane proteins transport different ions, proton and chloride, in the opposite direction. From alignment of the amino acid sequences, Thr-89 of bR is homologous to Ser-l15 of hR from Halobacterium salinarum (shR). X-ray structure of shR has revealed that OH group of this residue directly interacts with CI$\^$-/ Thus, Ser-lI5 of shR is expected to play an important role in CI$\^$-/ binding and transport. In this study, we expressed wild type hR from Natronobacterium pharaonis (PhR) and Sl30A, which corresponds to Ser-l15 of shR, in E. coli in order to clarify binding affinity of chloride ion and photocycle reactions. From the titration with CI$\^$-/, affinity of Sl30A became quite lower than that of WT (WT 6 mM, Sl30A 89 mM). Furthermore, from the flash photolysis with pulse laser of λ$\_$max/ at 532 nm, the reaction rate of SI30A from 0 intermediate to hR ground state was found to become apparently slower than that of WT. The singular value decomposition (SVD) and global fitting analyses of the photocycles were performed to identify all photointermediates and determine the reaction rates.

  • PDF

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.