• 제목/요약/키워드: photoemission spectroscopy

검색결과 167건 처리시간 0.033초

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

Topological phase transition according to internal strain in few layer Bi2Se3 thin film grown via a self-organized ordering process

  • 김태현;박한범;정광식;채재민;황수빈;조만호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.272.1-272.1
    • /
    • 2016
  • In a three-dimensional topological insulator Bi2Se3, a stress control for band gap manipulation was predicted but no systematic investigation has been performed yet due to the requirement of large external stress. We report herein on the strain-dependent results for Bi2Se3 films of various thicknesses that are grown via a self-organized ordering process. Using small angle X-ray scattering and Raman spectroscopy, the changes of d-spacings in the crystal structure and phonon vibration shifts resulted from stress are clearly observed when the film thickness is below ten quintuple layers. From the UV photoemission/inverse photoemission spectroscopy (UPS/IPES) results and ab initio calculations, significant changes of the Fermi level and band gap were observed. The deformed band structure also exhibits a Van Hove singularity at specific energies in the UV absorption experiment and ab initio calculations. Our results, including the synthesis of a strained ultrathin topological insulator, suggest a new direction for electronic and spintronic applications for the future.

  • PDF

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.

Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates

  • Jung, Woobeen;Song, Dongjoon;Cho, Su Hyun;Kim, Changyoung;Park, Seung Ryong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.14-17
    • /
    • 2016
  • Annealing as-grown electron-doped cuprates under a low oxygen-partial-pressure condition is a necessary step to achieve superconductivity. It has been recently found that the so-called protect annealing results in much better superconducting properties in terms of the superconducting transition temperature and volume fraction. In this article, we report on angle-resolved photoemission spectroscopy studies of a protect-annealed electron-doped cuprate $Pr_{0.9}La_{1.0}Ce_{0.1}CuO_4$ on annealing condition dependent superconducting and pseudo-gap properties. Remarkably, we found that the one showing a better superconducting property possesses almost no pseudo-gap while others have strong pseudo-gap feature due to an anti-ferromagnetic order.

Efficient Top-Emitting Organic Light Emitting Diode with Surface Modified Silver Anode

  • Kim, Sung-Jun;Hong, Ki-Hyon;Kim, Ki-Soo;Lee, Ill-Hwan;Lee, Jong-Lam
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.550-553
    • /
    • 2010
  • The enhancement of quantum efficiency using a surface modified Ag anode in top-emitting organic light emitting diodes (TEOLEDs) is reported. The operation voltage at the current density of $1\;mA/cm^2$ of TEOLEDs decreased from 9.3 V to 4.3 V as the surface of anode coated with $CuO_x$ layer. The work function of these structures were quantitatively determined using synchrotron radiation photoemission spectroscopy. Secondary electron emission spectra revealed that the work function of the Ag/$CuO_x$ structure is higher by 0.6 eV than that of Ag. Thus, the $CuO_x$ structure acts as a role in reducing the hole injection barrier by about 0.6 eV, resulting in a decrease of the turn-on voltage of top-emitting light emitting diodes.

Electronic structure of the Au intercalated monolayer graphene on Ni(111)

  • Hwang, H.N.;Jee, H.G.;Han, J.H.;Tai, W.S.;Kim, Y.D.;Hwang, C.C.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.342-342
    • /
    • 2010
  • We have investigated an Au intercalated monolayer graphene on Ni(111) using angle-resolved photoemission spectroscopy (ARPES), high resolution photoemission spectroscopy (HRPES), and low energy electron diffraction (LEED) at the 3A2 ARUPS beamline in Pohang Accelerator Laboratory. We find the monolayer graphene is well grown on the Ni(111) surface by the adsorption of acetylene. However, the graphene does not show the characteristic $\pi$ band near the Fermi level due to its strong interaction with the underlying substrate. When Au is adsorbed on the surface and then annealed at high temperature, we observe that Au is intercalated underneath the monolayer graphene. The process of the Au intercalation was monitored by HRPES of corresponding Au 4f and C 1s core levels as well as the electronic structure of the $\sigma$, $\pi$ states at $\Gamma$, K points. The $\sigma$, $\pi$ bands of graphene shift towards the Fermi level and the $\pi$ band is clearly observed at K point after the intercalation of full monolayer Au. The full width at half maximum (FWHM) of the C 1s peak narrows to approximately 0.42 eV after intercalation. These results imply that the interaction between the graphene and substrate is considerably weakened after the Au intercalation. We will discuss the graphene is really closer to ideal free standing graphene suggested recently.

  • PDF

Gapped Nearly Free-Standing Graphene on an SiC(0001) Substrate Induced by Manganese Atoms

  • Hwang, Jinwoong;Lee, Ji-Eun;Kang, Minhee;Park, Byeong-Gyu;Denlinger, Jonathan;Mo, Sung-Kwan;Hwang, Choongyu
    • Applied Science and Convergence Technology
    • /
    • 제27권5호
    • /
    • pp.90-94
    • /
    • 2018
  • The electron band structure of manganese-adsorbed graphene on an SiC(0001) substrate has been studied using angle-resolved photoemission spectroscopy. Upon introducing manganese atoms, the conduction band of graphene, that is observed in pristine graphene indicating intrinsic electron-doping by the substrate, completely disappears and the valence band maximum is observed at 0.4 eV below Fermi energy. At the same time, the slope of the valence band decreases by the presence of manganese atoms, approaching the electron band structure calculated using the local density approximation method. The former provides experimental evidence of the formation of nearly free-standing graphene on an SiC substrate, concomitant with a metal-to-insulator transition. The latter suggests that its electronic correlations are efficiently screened, suggesting that the dielectric property of the substrate is modified by manganese atoms and indicating that electronic correlations in grpahene can also be tuned by foreign atoms. These results pave the way for promising device application using graphene that is semiconducting and charge neutral.

Photoemission and Excitation Spectroscopy of cis-Difluoro(1,4,8,11-Tetraazacyclotetradecane) Chromium (III) Perchlorate

  • Park, Jong-Ha;Hong, Yong-Pyo;Park, Yu-Chul;Ryoo, Keon-Sang
    • Journal of Photoscience
    • /
    • 제7권1호
    • /
    • pp.21-26
    • /
    • 2000
  • The photoemission and excitation spectra of cis-[Cr(cyclam)F$_2$]ClO$_4$ (cyclam = 1,4,8,11-tetraazacy-clotetradecane) taken at 77 K are reported. The 298 K mid- and far-infrared spectra are also measured. The vibrational intervals of the electronic ground state are extracted from the far-infrared and emission spectra. The ten electronic bands due to spin-allowed and spin-forbidden transitions are assigned. The zero-phonon line In the excitation spectrum splits into two components by 169 cm$^{1}$, and the large $^2$E$_{g}$ splitting can be reproduced by the ligand field theory. According to the ligand field analysis, we can confirm that nitrogen atoms of the cyclam ligand have a strong c-donor character, and fluoride ligand also has strong $\sigma$- and $\pi$-donor properties toward chromium(III) ion.n.

  • PDF

수소가 흡착된 W(011) 표면의 재구성 (Surface Reconstruction on Hydrogen Covered W(011))

  • 김희봉;최원국;홍사용;황정남;정광호
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.83-87
    • /
    • 1992
  • 최근 Angle Resolved Ultraviolet Photoemission Spectroscopy(ARUPS)를 통하여 Mo(011)과 W(011)의 surface Fermi contour에 관한 연구가 발표되었다. Hydrogen 흡착시 W(011)의 electron contour는 팽창하였다. 이것은 electron contour를 이루는 surface state가 hydrogen 흡착시 higher binding energy로 이동한 결과이다. Surface state의 higher binding energy로의 이동은 결국 band flattening으로 이해되며, 이 band flattening 에 S.E.Trullinger의 long range dipole dipole force와 Kohn anomaly 현상을 부합시켜 W(011) surface에 수소 흡착시 일어나는 reconstruction 현상에 대한 설명을 시도해 보았다.

  • PDF

Valence Band Photoemission Study of the Kondo Insulator CeNiSn

  • Kang, J.S.;Olson, C.G.;Ouki, Y.
    • Journal of Magnetics
    • /
    • 제2권4호
    • /
    • pp.111-115
    • /
    • 1997
  • The electronic structure of the Kondo insulator CeNiSn has been investigated by using photoemission spectroscopy. A satellite feature is observed in the valence band spectrum about 6 eV below the Ni 3d main peak, indicating a strong Ni 3d Coulomb correlation in CeNiSn. The Ce 4f partial spectral weight exhibits three peak structures, including one due to the 4f1\longrightarrow4f0 transition, another near EF, and the other which overlaps the Ni 3d main peak. We interpret the peak near EF as reflecting mainly the Ce 4f/Sn 5p hybridization, whereas that around the ni 3d main peak as reflecting both the Ce 4f/Ni 3d and Ce 5d/Ni 3d hybridization. Yield measurements across the 4d\longrightarrow4f threshold indicate the Ce valence to be close to 3+. The prominent Fermi edge suggests a metallic ground state in CeNiSn.

  • PDF