• Title/Summary/Keyword: photodynamic

Search Result 227, Processing Time 0.073 seconds

In Vitro Mechanistic Studies of Photogenotoxicity of Polycyclic Aromatic Hydrocarbons

  • Park, Jong-Hoon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.106-106
    • /
    • 2003
  • Many polycyclic aromatic hydrocarbons (PAH) are acutely toxic to fish and other aquatic organisms in the presence of environmentally realistic intensities of solar ultraviolet radiation (SUVR). The phototoxicity of polycyclic aromatic hydrocarbons (PAHs) occurs through photodynamic activation of PAH compounds. Oxygen molecules react as quenchers with excited triplet states of PAHs producing reactive oxygen species (ROS).(omitted)

  • PDF

Photodynamically induced endothelial cell injury and neutrophil-like HL-60 adhesion

  • Takahashi, Miho;Nagao, Tomokazu;Matsuzaki, Kazuki;Nishimura, Toshihiko;Minamitani, Haruyuki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.518-520
    • /
    • 2002
  • Photodynamic therapy (PDT) is a treatment modality based on photochemical reaction and the resultant cytotoxic reactive oxygen species. The platelet thrombus formation leading to stasis observed in vivo during PDT is called vascular shut down (VSD) effect. To investigate the mechanism of the VSD effect, we observed Human Umblical Vein Endothelial Cell (HUVEC) injury induced by photochemical reaction. We observed cell retraction and blebbing after PDT. It seems that the injury was not fetal and only morphological change. Then, the cytoplasm was stained by Calcein-AM and subendothelial area was evaluated from fluorescence microscopy. The rate of subendothelial area after PDT increased significantly. Second, we investigated interaction between neutrophils and HUVEC. Human promyelocytic leukemia cells (HL-60) were differentiated into neutrophil by incubation with all-trans retinoic acid. Calcein-AM labeled neutrophil adhesion to HUVEC was evaluated from fluorescence microscopy. PDT-induced neutrophil adhesion to HUVEC depended more on the exposure of subendothlial area than on neutrophil activation. This result suggests that there is a certain interaction between neutrophil and HUVEC during PDT.

  • PDF

A Study on the Measurements of Optical Parameters in Photosensitizer by Light Scattering (농도가 진한 매질에서 광증감제에 의한 광학적 파라미터측정에 관한 연구)

  • Kim, Ki-Jun;Lee, Jou-Joub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • The study of wave propagation and scattering in biological media has become increasingly important in recent years. The propagation of light within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is measured. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements. The result was compromised with transport of intensities though a random distribution of scatters.

A Study on the Optical Influence by Photosensitizer in Vitro (In Vitro에서 광증감제에 의한 광학적 영향에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.182-190
    • /
    • 2005
  • The propagation of light radiation within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is important. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I\;/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements.