• 제목/요약/키워드: photocurrent signal

검색결과 21건 처리시간 0.025초

Binding energy study from Photocurrent signal in $CdGa_2Se4$ layers

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.47-47
    • /
    • 2009
  • The photoconductive $CdGa_2Se4$ layer has been investigated using photocurrent (PC) spectroscopy as a function of temperature. Three peaks corresponding to the band-to-band transitions were observed in the PC spectra for all temperature ranges. Also, contrary to our expectation, the PC intensities decreased with decreasing temperatures. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, two dominant levels by the exponential variation of the PC with varying temperature were observed, one at high temperatures and the other at low temperatures.

  • PDF

NSOM장치의 제작 및 특성 평가 (Fabrication and evaluation of NSOM apparatus)

  • 이주인;;유성규;신정규;유필원
    • 한국진공학회지
    • /
    • 제8권4B호
    • /
    • pp.530-535
    • /
    • 1999
  • W made a near-field optical microscope(NSOM) apparatus and evaluated it. To control the distance between a tip and a sample, we used a piezoelectric translator and a He-Ne laser, and consequently obtained the spatial resolution better than 100nm. For the semiconductor spectroscopic applications, we performed photoluminescence and photocurrent experiments on the GaAs/AlGaAs MQWs samples. In the case of PL experiment, we obtained the low signal to nose ration due to the extremely small power of a light source passing through the nanometric optical fiber tip. However photocurrent experiment shows a hundred times better signal to noise than that of PL experiment. This suggests that photocurrent experiment using NSOM have the possibility to provide the spatial resolution better than 10nm.

  • PDF

Binding energy study from photocurrent signal in HgCdTe layers

  • Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.379-379
    • /
    • 2010
  • $Hg_{1_x}Cd_xTe$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5\;{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111) /GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

  • PDF

Binding energy study from photocurrent signal inphotoconductive a $ZnIn_2S_4$ thin films

  • Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.380-380
    • /
    • 2010
  • The chalcopyrite $ZnIn_2S_4$ epilayers were grown on the GaAs substrate by using a hot-wall epitaxy (HWE) method. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2S_4$ have been estimated to be 0.1541 eV and 0.0129 eV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the $\Gamma_5$ states of the valence band of the $ZnIn_2S_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$, and $C_1$-exciton peaks for n = 1. Also, we obtained the $A_{\infty^-}$ and B-exciton peaks from the PC spectrum at 293 K.

  • PDF

Binding energy study from photocurrent signal in $CdIn_2Te_4$ crystal

  • Hong, Kwang-Joon
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.376-376
    • /
    • 2010
  • The single crystals of p-$CdIn_2Te_4$ were grown by the Bridgman method without the seed crystal. From photocurrent measurements, it was found that three peaks, A, B, and C, correspond to the intrinsic transition from the valence band states of $\Gamma_7$(A), $\Gamma_6$(B), and $\Gamma_7$(C) to the conduction band state of $\Gamma_6$, respectively. The crystal field splitting and the spin orbit splitting were found to be 0.2360 and 0.1119 eV, respectively, from the photocurrent spectroscopy. The temperature dependence of the $CdIn_2Te_4$ band gap energy was given by the equation of $E_g(T)=E_g(0)-(9.43{\times}10^{-3})T^2/(2676+T)$. $E_g$(0) was estimated to be 1.4750, 1.7110, and 1.8229 eV at the valence band states of A, B, and C, respectively. The band gap energy of p-$CdIn_2Te_4$ at room temperature was determined to be 1.2023 eV.

  • PDF

An I-V Circuit with Combined Compensation for Infrared Receiver Chip

  • Tian, Lei;Li, Qin-qin;Chang, Shu-juan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.875-880
    • /
    • 2018
  • This paper proposes a novel combined compensation structure in the infrared receiver chip. For the infrared communication chip, the current-voltage (I-V) convert circuit is crucial and important. The circuit is composed by the transimpedance amplifier (TIA) and the combined compensation structures. The TIA converts the incited photons into photocurrent. In order to amplify the photocurrent and avoid the saturation, the TIA uses the combined compensation circuit. This novel compensation structure has the low frequency compensation and high frequency compensation circuit. The low frequency compensation circuit rejects the low frequency photocurrent in the ambient light preventing the saturation. The high frequency compensation circuit raises the high frequency input impedance preserving the sensitivity to the signal of interest. This circuit was implemented in a $0.6{\mu}m$ BiCMOS process. Simulation of the proposed circuit is carried out in the Cadence software, with the 3V power supply, it achieves a low frequency photocurrent rejection and the gain keeps 109dB ranging from 10nA to $300{\mu}A$. The test result fits the simulation and all the results exploit the validity of the circuit.

Direct Measurement of Diffusion Length in Mixed Lead-halide Perovskite Films Using Scanning Photocurrent Microscopy

  • Kim, Ahram;Son, Byung Hee;Kim, Hwan Sik;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.514-518
    • /
    • 2018
  • Carrier diffusion length in the light-sensitive material is one of the key elements in improving the light-current conversion efficiency of solar-cell devices. In this paper, we measured the carrier diffusion length in lead-halide perovskite ($MAPbI_3$) and mixed lead-halide ($MAPbI_{3-x}Cl_x$) perovskite devices using scanning photocurrent microscopy (SPCM). The SPCM signal decreased as we moved the focused laser spot away from the metal contact. By fitting the data with a simple exponential curve, we extracted the carrier diffusion length of each perovskite film. Importantly, the diffusion length of the mixed-halide perovskite was higher than that of the halide perovskite film by a factor of 3 to 6; this is consistent with the general expectation that the carrier mobility will be higher in the case of the mixed lead-halide perovskites. Finally, the diffusion length was investigated as a function of applied bias for both samples, and analyzed successfully in terms of the drift-diffusion model.

CMOS Binary Image Sensor Using Double-Tail Comparator with High-Speed and Low-Power Consumption

  • Kwen, Hyeunwoo;Jang, Junyoung;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.82-87
    • /
    • 2021
  • In this paper, we propose a high-speed, low-power complementary metal-oxide semiconductor (CMOS) binary image sensor featuring a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector based on a double-tail comparator. The GBT photodetector forms a structure in which the floating gate (n+ polysilicon) and body of the PMOSFET are tied, and amplifies the photocurrent generated by incident light. The double-tail comparator compares the output signal of a pixel against a reference voltage and returns a binary signal, and it exhibits improved power consumption and processing speed compared with those of a conventional two-stage comparator. The proposed sensor has the advantages of a high signal processing speed and low power consumption. The proposed CMOS binary image sensor was designed and fabricated using a standard 0.18 ㎛ CMOS process.

The Mg Solid Solution far the P-type Activation of GaN Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Kim, KeungJoo;Chung, SangJo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권4호
    • /
    • pp.24-29
    • /
    • 2001
  • GaN films were grown for various Mg doping concentrations in metal-organic chemical vapor deposition. Below the Mg concentration of 10$^{19}$ ㎤, the thermally annealed sample shows the compensated phase to n-type GaN in Hall measurement. In the MB concentration of 4$\times$10$^{19}$ ㎤ corresponding to the hole carrier concentration of 2.6$\times$1$^{19}$ ㎤ there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the $V_{Ga}$ and for an acceptor of $Mg_{Ga}$ . The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photocurrent signal of 3.02-3.31 eV. Above the Mg concentration of 4$\times$10$^{19}$ ㎤, both the Mg doping level and Mg concentration were saturated and there Is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band.

  • PDF

Simulation of High-Speed and Low-Power CMOS Binary Image Sensor Based on Gate/Body-Tied PMOSFET-Type Photodetector Using Double-Tail Comparator

  • Kwen, Hyeunwoo;Kim, Sang-Hwan;Lee, Jimin;Choi, Pyung;Shin, Jang-Kyoo
    • 센서학회지
    • /
    • 제29권2호
    • /
    • pp.82-88
    • /
    • 2020
  • In this paper, we propose a complementary metal-oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector using a double-tail comparator for high-speed and low-power operations. The GBT photodetector is based on a PMOSFET tied with a floating gate (n+ polysilicon) and a body that amplifies the photocurrent generated by incident light. A double-tail comparator compares an input signal with a reference voltage and returns the output signal as either 0 or 1. The signal processing speed and power consumption of a double-tail comparator are superior over those of conventional comparator. Further, the use of a double-sampling circuit reduces the standard deviation of the output voltages. Therefore, the proposed CMOS binary image sensor using a double-tail comparator might have advantages, such as low power consumption and high signal processing speed. The proposed CMOS binary image sensor is designed and simulated using the standard 0.18 ㎛ CMOS process.