• Title/Summary/Keyword: photochemical cleavage

Search Result 9, Processing Time 0.024 seconds

Substituent Effect in Photochemistry of ${\beta}-Ethoxy-{\alpha}-halopropiophenones$

  • Cho, Sung-Su;Park, Bong-Ser
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.83-85
    • /
    • 2005
  • Photochemical reactivities of ${\beta}-ethoxypropiophenones$ are changed dramatically by putting a halogen at a position to the carbonyl functionality. ${\alpha}-Bromo-{\beta}-ethoxypropiophenone$ gives C-Br bond cleavage products solely, but ${\alpha}-chloro-{\beta}-ethoxypropiophenone$ forms mainly the Yang photocyclization products upon irradiation. The different reactivities of two compounds can be explained by relative rates of C-X bond cleavage and a-hydrogen abstraction.

  • PDF

Photochemical Reductions of Benzil and Benzoin in the Presence of Triethylamine and TiO? Photocatalyst

  • Park, Joon-Woo;Kim, Eun-Kyung;Koh Park, Kwang-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.9
    • /
    • pp.1229-1258
    • /
    • 2002
  • This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO2. Without TEA or TiO2, the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO2 increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO2 followed by protonation. In the reaction medium of 88 : 7 : 2 : 3 CH3CN/CH3OH/H2O/TEA with 2.5 $㎎/m{\ell}$ of TiO2, the yield of 2 was as high as 85 % at 50 % conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of $(\pm)$ and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO2-sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of ${\alpha}-cleavage$. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO2 by methanol, to produce 1,2-diphenylpropenone after dehydration reaction.

Photochemical Cleavage of Dibenzoylmethane and Curcumin in the Presence of N,N-Dimethylaniline in Methanol

  • Kim, Sung-Sik;Mah, Yoon-Jung;Kim, Ae-Rhan;Cho, Kyung-Won
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.129-132
    • /
    • 2004
  • Photochemically stable dibenzoylmethane and curcumin were cleaved dramatically when they were irradiated in the presence of N,N-dimethylaniline in methanol with 300 nm UV light. Several products such as benzil, secondary product derived from 1,4-diphenyl-1,4-butanedione, and unidentified compound were observed from the photoreactions of dibenzoylmethane with N,N-dimethylaniline. It was also found that one of the primary fragments produced by irradiation of curcumin in methanol were coupled with N,N-dimethylaniline to give a new enone compound, i.e., 1-(4-dimethylaminophenyl)-4-(4-hydroxy-3-methoxyphenyl)-but-3-en-2-one, as the major product.

  • PDF

Photochemical and Thermal Solvolysis of Picolyl Chlorides

  • Shim Sang Chul;Choi Seung Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 1982
  • Photochemical and thermal solvolysis of 2,3,4-picolyl chlorides (2,3,4-PC) were studied in amine solvents and the results were correlated with the electronic structures calculated by PPP-SCF-MO CI method. Activation parameters show that the thermal solvolysis of PC is $S_N2$ type rcaction. The rates of thermal reaction in pyridine or t-butylamine solvent decrease in the order of 2-PC > 3-PC > 4-PC. These results are consistent with the predictions based on the electron densities of picolyl chlorides. In photosolvolysis, the same products as those of thermal reactions were obtained. The results indicate that photochemical solvolysis undergoes through heterolytic cleavage. Relative quantum yields of photosolvolysis of 2,3,4-picolyl chlorides in t-butylamine solvent were determined to be 0.73, 1, and 0.50 respectively. These results are in good agreement with the electron densities of the excited triplet state of picolyl chlorides.

Substituent Effect in Photochemistry of Carbonyl Compounds: α-Halovalerophenones

  • Cho, Sung-Su;Park, Bong-Ser
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.42-44
    • /
    • 2004
  • Valerophenones containing a substituent at alpha position to the carbonyl group show the remarkable substituent effects on their photochemical reactions. ${\alpha}$-Bromovalerophenone gives only the C-Br bond cleavage products, but the ${\alpha}$-chlorovalerophenone follows the classical Norrish/Yang reaction pathway predominantly.

Photochemistry of $\alpha$, $\alpha$-Dihalovalerophenones

  • Cho, Sungsu;Park, Bong Ser
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.75-76
    • /
    • 2004
  • ${\alpha}$,${\alpha}$-Dibromovalerophenone and ${\alpha}$,${\alpha}$-dichlorovalerophenone were prepared and their photochemical behaviors were investigated. The former gives C-Br cleavage products and the latter gives mainly the Yang photocyclization products upon irradiation. The reactivity of the chlorine substituted ketone turned out to be quite different from that of ${\alpha}$,${\alpha}$-difluorovalerophenone which gives both the cyclization and elimination products from the 1,4-biradical intermediate.

  • PDF

The Influence of Aminium Radical Heterolytic Fragmentation Rates on the Nature and Efficiencies of SET-Promoted Photochemical Reactions

  • Yoon, Ung-Chan;Patrick S. Mariano
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 2003
  • Two important types of $\alpha$-heterolytic fragmentation reactions of aminium radicals are discussed. In these fragmentation processes, transfer of electrofugal groups from the aminium radicals to either Lowry-Bronsted or Lewis bases produces $\alpha$-amino radicals. The results of recent studies that provided key information about the dynamics of the important aminium radical fragmentation reactions, deprotonation, desilylation, are summarized. Finally, selected examples, which demonstrate how knowledge of the relative rates of aminium radical cleavage can be used to design synthetically relevant SET-promoted photocyclization reactions, are presented.

  • PDF

Solution Phase Photolyses of Substituted Diphenyl Ether Herbicides under Simulated Environmental Conditions (모조(模造) 환경조건하(環境條件下)에서의 치환(置換) Diphenyl Ether 제초제(除草劑)의 광분해(光分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.149-176
    • /
    • 1974
  • Eight substituted diphenyl ether herbicides and some of their photoproducts were studied in terms of solution phase photolysis under simulated environmental conditions by using a Rayonet photochemical reactor. The test compounds absorbed sufficient light energy at the wavelength of 300 nm to undergo various photoreactions. All the photoproducts were confirmed by means of tlc, glc, ir, ms, and/or nmr spectrometry. The results obtained are summarized as follows: Solution phase photolysis of C-6989: An exceedingly large amount of p-nitrophenol formed strongly indicates the readiness of the ether linkage cleavage of this compound as the main reaction in all solvents used. Photoreduction of nitro to amino group(s) and photooxidation of trifluoromethyl to carboxyl group were recognized as minor reactions. Aqueous photolysis of p-nitrophenol: Quinone(0.28%), hydroquinone (0.66%), and p-aminophenol (0.42%) were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. The mechanisms of formation of these products were proposed to be the nitro-nitrite rearrangement via $n{\rightarrow}{\pi}^*$ excitation and the photoreduction through hydrogen abstractions by radicals, respectively. Solution phase photolysis of Nitrofen: Photochemical reduction leading to the p-amino derivative was the main reaction in n-hexane. In aqueous solution, the photoreduction of nitro to amino group and hydroxylation predominated over the ether linkage cleavage. Nucleophilic displacement of the nitro group by hydroxide ion and replacement of chlorine substituents by hydroxyl group or, to a lesser extent, hydrogen were also observed as minor reactoins. Solution phase photolysis of MO-338: Photoreduction of the nitro to amino group was marked in the n-hexane solution photolysis. In the aqueous solution, photoreduction of the nitro substituent and hydroxylation were the main reactions with replacement of chlorine substituents by the hydroxyl group and hydrogen, and cleavage of the ether linkage as minor reactions. Photolyses of MC-4379, MC-3761, MC-5127, MC-6063, and MC-7181 in n-hexane and cyclohexane: Photoreduction of the nitro group leading to the corresponding amino derivative and replacement of one of the halogen substituents by hydrogen from the solvent used were the key reactions in each compound. Aqueous photolysis of MC-4379: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, hydroxylation, and replacement of the nitro by hydroxy group were prominent with photoreduction and dechlorination as minor reactions. Aqueous photolysis of MC-3761: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, and photoreduction followed by hydroxylation were the main reactions. Aqueous photolysis of MC-5127: Replacement of carboxyethyl by hydrogen was predominant with ether linkage cleavage, photoreduction, and dechlorination as minor reactions. It was obvious that the decarboxyethylation proceeded more readily than decarboxymethylation occurring in the other compounds. Aqueous photolysis of MC-6063: Cleavage of the ether linkage and photodechlorination were the main reactions. Aqueous photolysis of MC-7181: Replacement of the carboxymethyl group by hydrogen and monodechlorination were the remarkable reactions. Cleavage of the ether linkage and hydroxylation were thought to be the minor reactions. Aqueous photolysis of 3-carboxymethyl-4-nitrophenol: The photo-induced Fries rearrangement common to aromatic esters did not appear to occur in the carboxymethyl group of this type of compound. Conversion of nitro to nitroso group was the main reaction.

  • PDF

The Mechanism of the Photocyclization of N-(2-Haloarylmethyl)Pyridinium and N-(arylmethyl)-2-Halopyridinium Salts

  • Yong-Tae Park;Chang-Han Joo;Chung-Do Choi;Kum-Soo Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.163-169
    • /
    • 1991
  • The photochemical and photophysical properties of N-(2-haloarylmethyl)pyridinium, N-(arylmethyl)-2-halopyridinium, N-(2-haloarylmethyl)-2-halopyridinium salts and N-(2-halobenzyl)-isoquinolinium salt are studied. The pyridinium salts photocyclize to afford isoindolium salts, while the isoquinolium salts do not. In the photocyclization of N-(2-chlorobenzyl)-2-chloropyridinium salts, pyrido[2,1-a]-4-chloroisoindolium salt is formed by the cleavage of chlorine of pyridinium ring. This indicates that the excited moiety is not the phenyl ring, but the pyridinium ring. The triplet states of the pyridinium salts are believed to be largely involved in the photocyclization, since oxygen retards most of the reaction. Some assistance of a ${\pi}$-complex between the excited chlorine moiety of the salt and phenyl plane of the same molecule is required to explain the reactivity of the salts. N-(Benzyl)-2-chloropyridinium salt is two times more reactive than N-(2-chlorobenzyl)pyridinium salt. N-(Benzyl)-2-chloropyridinium salt can form ${\pi}-complex$ effectively because of the electron-rich phenyl group. The ${\pi}$-complex affords an intermediate, phenyl radical by cleaving the chlorine atom. The photocyclized product, isoindolium salt is obtained by losing the hydrogen atom from the phenyl radical. The reactive pyridinium salts 1a, 2a and 3a have a low fluorescence quantum yield (${\Phi}F$ < 0.01) and a higher triplet energy (ET > 68 kcal/mole) than the unreactive quinolinium salt. The unreactivity of isoquinolinium salt can be understood in relation to its high fluorescence quantum yield and its low triplet energy $(E_T = 61 kcal/mole).$.