• Title/Summary/Keyword: photocatalytic regeneration

Search Result 8, Processing Time 0.025 seconds

ZnO/SiO2 Prepared by Atomic Layer Deposition as Adsorbents of Organic Dye in Aqueous Solution and Its Photocatalytic Regeneration

  • Jeong, Bora;Jeong, Myung-Geun;Park, Eun Ji;Seo, Hyun Ook;Kim, Dae Han;Yoon, Hye Soo;Cho, Youn Kyoung;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.167.2-167.2
    • /
    • 2014
  • In this work, ZnO shell on mesoporous $SiO_2$ ($ZnO/SiO_2$) was prepared by atomic layer deposition (ALD). Diethylzinc (DEZ) and $H_2O$ were used as precursor of ZnO shell. $ZnO/SiO_2$ sample was characterized by X-ray diffraction (XRD), N2 sorption isotherms, X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). $ZnO/SiO_2$ showed higher adsorption capacity of MB than that of bare mesoporous $SiO_2$ and the adsorption capacities of $ZnO/SiO_2$ could be regenerated by UV exposure through the photocatalytic degradation of the adsorbed MB. This system could be used for removing organic dye from water by adsorption and reused after saturation of adsorption due to its photocatalytic regeneration.

  • PDF

Sequential adsorption - photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon

  • Andriantsiferana, Caroline;Mohamed, Elham Farouk;Delmas, Henri
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.181-189
    • /
    • 2015
  • A composite material was tested to eliminate phenol in aqueous solution combining adsorption on activated carbon and photocatalysis with $TiO_2$ in two different ways. A first implementation involved a sequential process with a loop reactor. The aim was to reuse this material as adsorbent several times with in situ photocatalytic regeneration. This process alternated a step of adsorption in the dark and a step of photocatalytic oxidation under UV irradiation with or without $H_2O_2$. Without $H_2O_2$, the composite material was poorly regenerated due to the accumulation of phenol and intermediates in the solution and on $TiO_2$ particles. In presence of $H_2O_2$, the regeneration of the composite material was clearly enhanced. After five consecutive adsorption runs, the amount of eliminated phenol was twice the maximum adsorption capacity. The phenol degradation could be described by a pseudo first-order kinetic model where constants were much higher with $H_2O_2$ (about tenfold) due to additional ${\bullet}OH$ radicals. The second implementation was in a continuous process as with a fixed bed reactor where adsorption and photocatalysis occurred simultaneously. The results were promising as a steady state was reached indicating stabilized behavior for both adsorption and photocatalysis.

Photocatalytic Systems of Pt Nanoparticles and Molecular Co Complexes for NADH Regeneration and Enzyme-coupled CO2 Conversion

  • Kim, Ellen;Jeon, Minkyung;Kim, Soojin;Yadav, Paras Nath;Jeong, Kwang-Duk;Kim, Jinheung
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.42-45
    • /
    • 2013
  • Natural photosynthesis utilizes solar energy to convert carbon dioxide and water to energy-rich carbohydrates. Substantial use of sunlight to meet world energy demands requires energy storage in useful fuels via chemical bonds because sunlight is intermittent. Artificial photosynthesis research focuses the fundamental natural process to design solar energy conversion systems. Nicotinamide adenine dinucleotide ($NAD^+$) and $NADP^+$ are ubiquitous as electron transporters in biological systems. Enzymatic, chemical, and electrochemical methods have been reported for NADH regeneration. As photochemical systems, visible light-driven catalytic activity of NADH regeneration was carried out using platinum nanoparticles, molecular rhodium and cobalt complexes in the presence of triethanolamine as a sacrificial electron donor. Pt nanoparticles showed photochemical NADH regeneration activity without additional visible light collector molecules, demonstrating that both photoactivating and catalytic activities exist together in Pt nanoparticles. The NADH regeneration of the Pt nanoparticle system was not interfered with the reduction of $O_2$. Molecular cobalt complexes containing dimethylglyoxime ligands also transfer their hydrides to $NAD^+$ with photoactivation of eosin Y in the presence of TEOA. In this photocatalytic reaction, the $NAD^+$ reduction process competed with a proton reduction.

Evaluation of Catalyst Deactivation and Regeneration Associated with Photocatalysis of Malodorous Sulfurized-Organic Compounds (악취유발 황화유기화합물질의 광촉매분해에 따른 촉매 비활성화와 재생 평가)

  • Jo, Wan-Kuen;Shin, Myeong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.965-974
    • /
    • 2009
  • This study evaluated the degradation efficiency of malodorous sulfurized-organic compounds by utilizing N- and Sdoped titanium dioxide under visible-light irradiation, and examined the catalyst deactivation and regeneration. Catalyst surface was characterized by employing Fourier-Transform-Infrared-Red (FTIR) spectra. The visible-light-driven photocatalysis techniques were able to efficiently degrade low-level dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) with degradation efficiencies exceeding 97%, whereas they were not effective regarding the removal of high-level DMS and DMDS, with degradation efficiencies of 84 and 23% within 5 hrs of photocatalytic processes. As compared with DMS, DMDS which containes one more sulfur element revealed quick catalyst deactivation. Catalyst deactivation was confirmed by the equality between input and output concentrations of DMD or DMDS, the obsevation of no $CO_2$ generation during a photocatalytic process, and the FTIR spectrum peaks related with sulfur ion compounds, which are major byproducts formed on catalyst surfaces. The mineralization efficiency of DMS at 8 ppm, which was a peak value during a photocatalytic process, was calculated as 144%, exceeding 100%. The catalyst regenerated by high-temperature calcination exhibited higher catalyst recovery efficiency (53 and 58% for DMDS and DMS, respectively) as compared with dry-air and humid-air regeneration processes. However, even the calcined method was unable to totally regenerate deactivated catalysts.

Characterization of Repeated Deactivation and Subsequent Re-activation of Photocatalyst Used in Two Alternatively-operating UV/photocatalytic Reactors of Waste-air Treating System (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템에서의 광촉매의 비활성화 및 재생 특성)

  • Lee, Eun Ju;Chung, Chan Hong;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.584-595
    • /
    • 2021
  • In this study, the correlation between operating stages of waste air-treating system composed of two alternatively-operating UV/photocatalytic reactors, and the deactivation of photocatalyst used in each operating stage, was investigated by instrumental analysis thereon. The repeated deactivation and subsequent re-generation of photocatalyst used in the waste air treating system of previous investigation performed by Lee and Lim (Korean Chem. Eng. Research, 59(4), 574-583(2021)), were characterized on virgin photocatalyst-carrying porous SiO2 media (A4), used photocatalyst-carrying porous SiO2 media (A1, A2 and A3) collected from the corresponding photocatalytic reactor upon 1st, 2nd, and 3rd run, respectively, regenerated photocatalyst-carrying porous SiO2 media upon 1 time-run (AD1) and 3 times regenerated photocatalyst-carrying porous SiO2 media upon 3 time-runs (AD3) by instrumental analysis including BET analysis, SEM, XPS, SEM-EDS and FT-IR. As a result, the proper regeneration-temperature for deactivated photocatalyst to be regenerated several times (more than 3 times), was suggested below 200 ℃. Such temperature of deactivated photocatalyst-regeneration was almost consistent to the one, according to BET analysis, at which tiny nano-pores blocked by adsorbed ethanol-oxidative and degraded intermediates (AEODI), were regenerated to be reopened through almost complete mineralization of AEODI. In particular, the results of XPS analysis indicated an incurrence of insignificant deactivation of photocatalysis upon 1st run of UV/photocatalytic reactor (A or C) of the previous investigation. In addition, the results of XPS analysis were consistent with the experimental results of the previous investigation in that 1) deactivation of photocatalyst incurred during 2nd run of the UV/photocatalytic reactor (A or C) resulted in decreased removal efficiency, by ca. 5% and 5%, of ethanol and hydrogen sulfide, respectively, compared with its 1st run; 2) there was insignificant difference between the removal efficiencies of its 2nd run and 3rd run. Furthermore, the removal efficiencies of ethanol and hydrogen sulfide for hypothetical 4th run of photocatalytic reactor in the previous investigation, using AD3, were expected to decrease, compared with its 3rd run, by much more than those for 2nd run in the previous investigation did, compared with its 1st run.

Performance of Waste-air Treating System Composed of Two Alternatively-operating UV/photocatalytic Reactors and Evaluation of Its Characteristics (교대로 운전되는 두 개의 UV/광촉매반응기로 구성된 폐가스 처리시스템의 성능 및 특성 평가)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.574-583
    • /
    • 2021
  • Waste air containing ethanol (100 ppmv) and hydrogen sulfide (10 ppmv) was continuously treated by waste air-treating system composed of two annular photocatalytic reactors (effective volume: 1.5 L) packed with porous SiO2 media carrying TiO2-anatase photocatalyst, one of which was alternately operated for 32 d/run while the other was regenerated by 100 ℃ hot air with 15 W UV(-A)-light on. As its elimination-behavior of ethanol, the removal efficiencies of ethanol at 1st, 2nd and 3rd operation of the photocatalytic reactor system(A), turned out to be ca. 60, 55 and 54%, respectively, at their steady state condition. Unlike the elimination-behavior of ethanol, its hydrogen sulfide-elimination behavior showed repeated decrease of hydrogen sulfide removal efficiency by its resultant arrival at a lower level of steady state condition. Nevertheless, the removal efficiencies of hydrogen sulfide at 1st, 2nd and 3rd operation of the photocatalytic reactor system, turned out to be ca. 80, 75 and 73%, respectively, at their final steady state condition, higher by ca. 20, 20 and 19% than those of ethanol, respectively. Therefore, assuming that adsorption on porous SiO2-photocatalyst carrier was regarded to belong to a reversible deactivation and that decreased % of removal efficiency due to the reversible deactivation of photocatalyst including the adsorption was independent of the number of its use upon regeneration, the increments of the decreased % of removal efficiency of ethanol and hydrogen sulfide, due to an irreversible deactivation of photocatalyst, for the 3rd use of regenerated photocatalyst, compared with the 2nd use of regenerated photocatalyst, were ca. 1 and 2%, respectively, which was insignificant or the less than those of ca. 5 and 5%, respectively, for the 2nd use of regenerated photocatalyst compared with the 1st use of virgin photocatalyst. This trend of the photocatalytic reactor system was observed to be similar to that of the other alternately-operating photocatalytic reactor system.

Recovery of Copper, Reuse of $TiO_2$, and Assessment of Acute Toxicity in the Photocatalytic Oxidation of Cu(II)-EDTA (Cu(II)-EDTA 광촉매 산화반응에서의 구리회수, $TiO_2$ 재사용 및 처리수 독성평가)

  • Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.844-851
    • /
    • 2005
  • The purpose of this study was to determine feasibility of application of regenerated or recycled $TiO_2$ on the successive treatment of Cu(II)-EDTA. The recovery of copper, the reuse of $TiO_2$ and the assessment of acute toxicity was studied in the total eight successive photocatalytic reactions. Aqueous solution of $10^{-4}\;M$ Cu(II)-EDTA was treated using an illuminated $TiO_2$ at pH 6 in a circulating reactor. Two different procedures were applied in the reuse of $TiO_2$: i) recycle of $TiO_2$ without acid wash ii) regeneration of $TiO_2$ with acid wash to remove adsorbed copper in a previous experiment. The averaged decomplexation rate constant($k'_{obs}$) of Cu(II)-EDTA in recycle of $TiO_2$ without acid wash was approximately 45% less than that in regeneration of $TiO_2$ with acid wash. Removal of Cu(II) was near complete after 180 minutes in the total eight successive photocatalytic reactions using the regenerated $TiO_2$ after acid wash. In contrast, removal of Cu(II) was minimum at total fifth successive photocatalytic oxidation using the recycled $TiO_2$ without arid wash. The recovered $TiO_2$ was approximately 86% in average in each procedure. The recovered Cu(II) was 67.9% in average. The acute relative toxicity of the treated water rapidly declined at an initial reaction time up to 60 minutes but little declination was observed after 60 minutes due to little degradation of DOC. Relative toxicity of treated water using the recycled $TiO_2$ without acid wash we some what well correlated with the concentration of dissolved Cu(II). From this work, it is suggested that Cu(II)-EDTA can be effectively treated using an integrated cyclic photocatalytic oxidation with recovery of $TiO_2$ and Cu(II).

Development of Titanium Dioxide (TiO2)-immobilized Buoyant Photocatalyst Balls Using Expanded Polystyrene (EPS)

  • Joo, Jin Chul;Lee, Saeromi;Ahn, Chang Hyuk;Lee, Inju;Liu, Zihan;Park, Jae-Roh
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.215-220
    • /
    • 2016
  • A new immobilization technique of nanoscale $TiO_2$ powder to expanded polystyrene (EPS) balls with temperature-controlled melting method was developed, and the photocatalytic activity of $TiO_2$ powder-embedded EPS balls were evaluated using methylene blue (MB) solution under ultraviolet irradiation (${\lambda}=254nm$). Based on the scanning electron microscope (SEM) images and associated energy-dispersive X-ray spectroscopy (EDX) analysis, the components of the intact EPS balls were mainly carbon and oxygen, whereas those of $TiO_2$-immobilized EPS balls were carbon, oxygen, and titanium, indicating that relatively homogenous patches of $TiO_2$ and glycerin film were coated on the surface of EPS balls. Based on the comparison of degradation efficiencies of MB between intact and $TiO_2$-immobilized EPS balls under UVC illumination, the degradation efficiencies of MB can be significantly improved using $TiO_2$-immobilized EPS balls, and surface reactions in heterogeneous photocatalysis were more dominant than photo-induced radical reactions in aqueous solutions. Thus, $TiO_2$-immobilized EPS balls were found to be an effective photocatalyst for photodegradation of organic compounds in aqueous solutions without further processes (i.e., separation, recycling, and regeneration of $TiO_2$ powder). Further study is in progress to evaluate the feasibility for usage of buoyant $TiO_2$-immobilized EPS to inhibit the excessive growth of algae in rivers and lakes.