• 제목/요약/키워드: photocatalytic $TiO_2$

Search Result 795, Processing Time 0.028 seconds

Photocatalytic Degradation of Algae and its By-product using Rotating Photocatalytic Oxidation Disk Reactor

  • Son, Hee-Jong;Jung, Chul-Woo;Bae, Sang-Dae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.170-173
    • /
    • 2009
  • This study examined the special technique of photocatalytic degradation (RPODisk) for removal of taste and odor causing materials, algae, and algal toxin. The RPODisk was effective for removal of these troublesome contaminants. It outperformed the fixed media and the UV irradiation for geosmin removal. The RPODisk performance was comparable to the combination of the UV irradiation with TiO2. The RPODisk performance was affected by the rotating speed. The faster the speed was, the better the performance. The RPODisk was also effective for removal of algae and algal toxin. The algal activity reduced by 80% after 30 mins of the treatment. More toxic microcystin (MC)-LR was more difficult to remove than MC-RR. The times for 50% removal were 23.7 mins for MC-LR and 14.1 mins for MC-RR. Almost 100 mins of the contact time was required to completely remove MC-LR at the rotating speed of 260 rpm.

Sonocatalytic Degradation of Rhodamine B in the Presence of TiO2 Nanoparticles by Loading WO3

  • Meng, Ze-Da;Sarkar, Sourav;Zhu, Lei;Ullah, Kefayat;Ye, Shu;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.6-12
    • /
    • 2014
  • In the present work, $WO_3$ and $WO_3-TiO_2$ were prepared by the chemical deposition method. Structural variations, surface state and elemental compositions were investigated for preparation of $WO_3-TiO_2$ sonocatalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM) were employed for characterization of these new photocatalysts. A rhodamine B (Rh.B) solution under ultrasonic irradiation was used to determine the catalytic activity. Excellent catalytic degradation of an Rh.B solution was observed using the $WO_3-TiO_2$ composites under ultrasonic irradiation. Sonocatalytic degradation is a novel technology of treating wastewater. During the ultrasonic treatment of aqueous solutions sonoluminescence, cavitaties and "hot spot" occurred, leading to the dissociation of water molecules. In case of a $WO_3$ coupled system, a semiconductor coupled with two components has a beneficial role in improving charge separation and enhancing $TiO_2$ response to ultrasonic radiations. In case of the addition of $WO_3$ as new matter, the excited electrons from the $WO_3$ particles are quickly transferred to $TiO_2$ particle, as the conduction band of $WO_3$ is 0.74 eV which is -0.5 eV more than that of $TiO_2$. This transfer of charge should enhance the oxidation of the adsorbed organic substrate. The result shows that the photocatalytic performance of $TiO_2$ nanoparticles was improved by loading $WO_3$.

Preparation of Ultra-Thin Transparent TiO2 Coated Film by Ink-Jet Printing Method (잉크젯 프린팅을 이용한 초박막 투명 TiO2 코팅층 제조)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Lee, Nam-Hee;Guo, Yupeng;Lee, Won-Jae;Park, Kyeong-Soon;Kim, Sun-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.190-196
    • /
    • 2007
  • Dye sensitized solar cells(DSSC) are the most promising future energy resource due to their high energy efficiency, low production cost, and simple manufacturing process. But one problem in DSSC is short life time compared to silicon solar cells. This problem occurred from photocatalytic degradation of dye material by nanometer sized $TiO_2$ particles. To prevent dye degradation as well as to increase its life time, the transparent coating film is needed for UV blocking. In this study, we synthesized nanometer sized $TiO_2$ particles in sols by increasing its internal pressure up to 200 bar in autoclave at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several nm to 30 nm. Synthesized $TiO_2$ sols were coated on the backside of fluorine doped tin oxide(FTO) glass by ink jet printing method. With increasing coating thickness by repeated ink jet coating, the absorbance of UV region (under 400 nm) also increases reasonably. Decomposition test of titania powders dispersed in 0.1 mM amaranth solution covered with $TiO_2$ coating glass shows more stable dye properties under UV irradiation, compared to that with as-received FTO glass.

Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes

  • Jiang, Yinhua;Luo, Yingying;Lu, Ziyang;Huo, Pengwei;Xing, Weinan;He, Ming;Li, Jiqin;Yan, Yongsheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.76-82
    • /
    • 2014
  • 1-Methylimidazole-2-thiol, as a kind of mercaptans, is a typical organic pollutant which has not been efficiently removed. In this study, titanium dioxide ($TiO_2$) photocatalyst based on magnetic multi-walled carbon nanotubes (MWCNTs) was synthesized via hydrothermal and sol-gel methods. The as-prepared photocatalyst was extensively characterized by X-ray diffraction (XRD), X-ray energy diffraction spectrum (EDS), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectra, UV-Vis diffuse reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM). This photocatalyst of $TiO_2$/$Fe_3O_4$/MWCNTs was proved to exhibit high photocatalytic efficiency and the photodegradation rate could reach nearly 82.7% for the degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation. In addition, the results demonstrated that inorganic ions had a negative impact on photodegradation of 1-methylimidazole-2-thiol to varying degrees. Moreover, pH had a great and complex effect on photocatalytic degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation.

Characteristics of MEK and Benzene Treatment by Operating Condition of TiO$_2$ Photocatalytic Oxidation Process (TiO$_2$ 촉매 운전조건에 따른 MEK 및 Bezene의 처리특성)

  • 전의찬;사재환;최영태;차왕석;김현기
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.365-366
    • /
    • 2001
  • 자동차 제조공장, 화학 및 제약 공장 등 각종 산업체 뿐만 아니라 가정생활에서 배출되는 휘발성유기화합물들 (Volatile Organic Compounds)을 처리하기 위하여 지난 수년간 많은 공정들이 개발되어 왔으며, 이러한 공정들 중 광촉매에 의한 유기화합물의 광분해에 관한 연구는 일본 등 선진국을 비롯하여 우리나라에서도 각광을 받고 있다. TiO$_2$광촉매는 항균, 탈취 등의 기능을 가지고 있어 산업계 및 생활환경에서 많은 적용 가능성을 가지고 있으며, 특히 일상에 존재하는 태양광이나 형광등에 의해서도 광촉매 반응을 일으킬 뿐만 아니라 내마모성이 우수하며, 화학적으로 안정적이다는 장점을 가지고 있다. (중략)

  • PDF

Studying the influence of the concentration of alkaline solution to the formation of TiO2 nanotube prepared by microwave-assisted hydrothermal method

  • Hao, Nguyen Huy;Cho, Sung Hun;Lee, Soo W.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.260-261
    • /
    • 2014
  • $TiO_2$ nanotubes (TNT) synthesized by microwave-assisted hydrothermal method by using $TiO_2-P25$ as a precursor at hydrothermal temperature $150^{\circ}C$ in 4 hours. The concentration of alkaline solution is between 4M and 10M. Samples were characterized by X-ray diffraction (XRD), Raman spectroscopy (RS), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) and UV-vis DRS spectroscopy. The results demonstrated the effects of the alkali concentration to the formation of nanotubes. The photocatalytic activity was investigated by degradation of Methylene Blue (MB).

  • PDF

Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review

  • Palanivelu, K.;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.214-224
    • /
    • 2007
  • The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve $TiO_2$ visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to $TiO_2$ are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.

New Photocatalytic Systems for Air Purification (신 개념의 광촉매 응용 공기정화시스템)

  • Ha, Jin-Wook;Kim, Hak-Soo;Han, Chul-Hee
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.347-349
    • /
    • 2003
  • Photoelectrocatalytic system is based on the idea that the photogenerated electrons in a layer of TiO$_2$ would move toward a cathode with application of high voltage across the TiO$_2$ coated aluminum plate. In this system, aluminum plate is used as a substrate for TiO$_2$ and also serves as a cathode. According to our scheme, moving photogenerated electrons toward a cathode would have the same effect as moving these electrons away from the holes, which would have the effect of retarding recombination of photogenerated electrons with holes. Recent experiments on benzene and toluene showed higher rates of removal with high voltage on compared to high voltage off, which supported our scheme partially.

  • PDF

Kinetics of Photocatalytic Reactions with Porous Carriers Coated with Nano-$TiO_2$ Particles (나노-$TiO_2$ 입자로 코팅된 다공성 담체의 광촉매 반응에 관한 동력학)

  • Park, Seong-Jun;Rittmann, Bruce E.;Bae, Woo-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.927-932
    • /
    • 2009
  • Toxic and recalcitrant organic pollutants in wastewaters can be effectively treated when advanced oxidation and biodegradation are combined, ideally with intimate coupling, in which both processes occur simultaneously in the same system. One means to achieve intimate coupling is to coat nanoscale $TiO_2$ on the outside of macroporous biofilm carriers. This study investigated the kinetics of photocatalysis with $TiO_2$-coated porous carriers. The carriers were made of polyvinyl alcohol (PVA) and coated with $TiO_2$ using a low-temperature sol-gel process. The $TiO_2$-coated carriers catalyzed the oxidation of methylene blue (MB) effectively under irradiation of UV light. The overall reaction rate with adsorption and photolysis saturated at high MB concentration, and approached the adsorption rate, which was first order for all MB concent rations. This result indicates that adsorbed MB may have slowed photocatalysis by blocking active sites for photocatalysis. The overall kinetics could be described by a quasi-Langmuir model. The estimated maximum specific (per unit mass of $TiO_2$) transformation rate of MB by the $TiO_2$-coated carriers was four times larger than that obtained from slurry-$TiO_2$ reactors. This observation demonstrated that the $TiO_2$ present as a coating on the carriers maintained high efficiency for transforming recalcitrant organic matter via photocatalysis. These findings serve as a foundation for advancement of an intimate coupling of photocatalysis to biodegradation.

Photocatalytic Cr(VI) Reduction with a Photoanode for Hydrogen Production (수소제조용 광전극을 활용한 Cr(VI) 환원처리에 관한 연구)

  • Shim, Eun-Jung;Park, Youn-Bong;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.452-457
    • /
    • 2007
  • Titanium foil and mesh(anodized tubular $TiO_2$ electrode, ATTE) were anodized in a bath at $5^{\circ}C$ with 20V external bias applied, then annealed at different temperatures($450^{\circ}C{\sim}850^{\circ}C$) to obtain tubular $TiO_2$ on the Ti substrate. The prepared sample was used to investigate rate of hydrogen production as well as Cr(VI) reduction. The ATTEs annealed at relatively lower temperatures showed higher activity than those at relatively higher temperatures. In particular, the Cr(VI) reduction was pH-dependent. To improve photocatalytic Cr(VI) reduction with the ATTEs, two configurations, fixing foil type and rotating mesh type, were also compared. As a result, the rotating mesh type was much more effective for Cr(VI) reaction than the former due to the more efficient use of the light. In the rotating type reactor, as the rotating speed increased, the rate of the Cr(VI) reduction was getting faster.