• 제목/요약/키워드: photocatalytic $TiO_2$

검색결과 795건 처리시간 0.03초

CPCs를 이용한 $TiO_2$ 광촉매반응공정에서 초기 pH와 촉매농도가 클로로포름 분해에 미치는 영향 (The Effect of Initial pH and Dose of $TiO_2$ on Chloroform Removal in Photocatalytic Process using Compound Parabolic Concentrator Reactor System)

  • 조상현;최명찬;남상건;정희숙;김지형
    • 대한환경공학회지
    • /
    • 제32권12호
    • /
    • pp.1147-1153
    • /
    • 2010
  • 본 연구에서는 Compound parabolic concentrator reactor system을 이용하여 초기농도 10 mg/L의 클로로포름을 광촉매 반응으로 처리하였다. 1000 W의 메탈할라이드 방전램프를 인공태양광원으로 사용하였으며 약 99%의 클로로포름이 광촉매반응에 의하여 90분 안에 제거되어 먹는물 수질기준인 0.08 mg/L을 만족하였다(pH 5.24, $TiO_2$ 농도 0.2 g/L). 또한 초기 pH와 $TiO_2$ 농도가 클로로포름의 분해에 미치는 영향 을 알아보기 위해 pH 4, 5, 6, 7과 $TiO_2$ 농도 0.1, 0.2, 0.4의 조건에서 실험을 수행하였으며, 각 pH 에서의 $TiO_2$ 입자크기(particle size)와 비표면적(specific surface area)을 측정하여 클로로포름 분해율과 비교하여 비표면적과 광촉매반응 활성 사이의 상관관계를 규명하고자 하였다. 그 결과 pH와$TiO_2$ 농도에 따른 클로로포름 분해율은 큰 차이를 보이지 않았다. 하지만 pH에 따라 $TiO_2$의 입자크기분포(particle distribution)와 비표면적이 변했고 pH 7은 다른 pH 영역보다 비표면적이 약 2배 정도 작은 결과를 보였다. 본 연구의 결과를 바탕으로 클로로포름의 광촉매반응은 $TiO_2$의 비표면적과 상관관계가 없는 TCE-type인 것을 유추할 수 있었다.

Preparation of Dihydroxy Naphthalene/TiO2 Complex via Surface Modification and Their Photocatalytic H2 Production Performances Under Visible Light

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2056-2062
    • /
    • 2013
  • The dihydroxy naphthalene/$TiO_2$ complexes with different substitution patterns were prepared by surface modification. X-ray diffraction, UV-Vis spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy were used to characterize the prepared composite materials. The results indicated that the surface modification did not influence the crystallization of $TiO_2$. The visible-light absorbances of prepared dihydroxy naphthalene/$TiO_2$ complexes could be assigned to the ligand-to-metal charge transfer. The obtained catalyst exhibited outstanding photocatalytic activity and stability under visible light. A linear relationship existed between the percentages of hydroxynaphthalenes coordinated on $TiO_2$ surface and $H_2$ production ability. The substitution pattern of dihydroxy naphthalene and $CH_3OH$ content could also influence the photocatalytic performance remarkably. The photocatalytic $H_2$ production ability was further improved after loading with ultra low concentration of Pt, 0.02 wt %. The possible mechanism was proposed.

TiO$_2$가 담지된 활성탄을 이용한 Methylene Blue의 광분해 (Photocatalytic Degradation of Methylene Blue using $TiO_2$ Supported on Activated Carbon)

  • 이종대;이태준;조경태
    • 한국응용과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.153-159
    • /
    • 2006
  • The photocatalytic degradation of methylene blue(MB) was investigated using $TiO_2$ as photocatalyst and UV radiation. $TiO_2$ supported with activated carbon(AC) was prepared by SOL-GEL method and depended on several parameters such as the mass ratio of $TiO_2/AC$, pH and experimental time. The presence of the anatase and rutile crystal phase was determined by XRD analyses of the prepared $TiO_2$. The degradation of MB with $TiO_2/AC$ was about 20% higher than that of AC alone. A variation of photodegradation was negligible under UV radiation conditions ( ${\geq}$ 40W). It was experimentally showed that the photodegradation rate was increased with increasing the amount of photocatalyst. The optimal catalyst was prepared by impregmation of $5wt%-TiO_2$ with AC and was calcined at $300^{\circ}C$, and showed about 99% removal efficiency for 3hrs.

Electrochemical Synthesis of TiO2 Photocatalyst with Anodic Porous Alumina

  • Hattori, Takanori;Fujino, Takayoshi;Ito, Seishiro
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.593-600
    • /
    • 2007
  • Aluminum was anodized in a $H_2SO_4$ solution, and titanium (IV) oxide ($TiO_2$) was electrodeposited into nanopores of anodic porous alumina in a mixed solution of $TiOSO_4$ and $(COOH)_2$. The photocatalytic activity of the prepared film was analyzed for photodegradation of methylene blue aqueous solution. Consequently, we found it was possible to electrodeposit $TiO_2$ onto anodic porous alumina, and synthesized it into the nanopores by hydrolysis of a titanium complex ion under AC 8-9 V when film thickness was about $15-20{\mu}m$. The photocatalytic activity of $TiO_2$-loaded anodic porous alumina ($TiO_2/Al_2O_3$) at an impressed voltage of 9 V was the highest in every condition, being about 12 times as high as sol-gel $TiO_2$ on anodic porous alumina. The results revealed that anodic porous alumina is effective as a substrate for photocatalytic film and that high-activity $TiO_2$ film can be prepared at low cost.

유성 볼밀을 통해 제조된 TiO2-xNx 광촉매의 가시광 활성도와 NH3양 및 분쇄시간과의 상관 관계 (The Relation Between a Visible-light Photocatalytic Activity of TiO2-xNx and NH3 Amount/the Period of Grinding Time)

  • 강인철;고준빈;한재길;김광희;최성창
    • 한국분말재료학회지
    • /
    • 제16권3호
    • /
    • pp.196-202
    • /
    • 2009
  • A visible-light photoactive $TiO_{2-x}N_x$ photocatalyst was synthesized successfully by means of cogrinding of anatase-$TiO_2(a-TiO_2)$ in $NH_3$ ambient, followed by heat-treatment at $200^{\circ}C$ in air environment. In general, it is well known that the grinding-operation induces phase transformation of a-$TiO_2$ to rutile $TiO_2$. This study investigates the influence of the amount of $NH_3$ gas on the phase transformation rate of a-$TiO_2$ and enhancement of visible-light photocatalytic activity, and also examines the relation between the photocatalytic activity and the period of grinding time. The phase transformation rate of a-$TiO_2$ to rutile is retarded with the amount of NH3 injected. And the visible-light photocatalytic activity of samples, was more closely related to the period of grinding time than $NH_3$ amount injected, which means that the doping amount of nitrogen into $TiO_2$ more effective to mechanical energy than $NH_3$ amount injected. XRD, XPS, FT-IR, UV-vis, Specific surface area (SSA), NOx decomposition techniques are employed to verify above results more clearly.

티타늄 금속지지체에 고정화된 나노튜브 광촉매와 평판형 광반응기를 이용한 Cr(VI) 환원처리 효율 향상 연구 (Enhanced photocatalytic Cr(VI) reduction using immobilized nanotubular TiO2 on Ti substrates and flat type photoreactor)

  • 김영지;주현규;윤재경
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.33-38
    • /
    • 2015
  • In this study, flat-type photocatalytic reaction system is applied to reduce toxic hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in aqueous solution under UV irradiation. To overcome the limitation of conventional photocatalysis, a novel approach toward photocatalytic system for reduction of hexavalent chromium including nanotubular $TiO_2$ (NTT) on two kinds of titanium substrates (foil and mesh) were established. In addition, modified Ti substrates were prepared by bending treatment to increase reaction efficiency of Cr(VI) in the flat-type photocatalytic reactor. For the fabrication of NTT on Ti substrates, Ti foil and mesh was anodized with mixed electrolytes ($NH_4F-H_2O-C_2H_6O_2$) and then annealed in ambient oxygen. The prepared NTT arrays were uniformly grown on two Ti substrates and surface property measurements were performed through SEM and XRD. Hydraulic retention time(HRT) and substrate type were significantly affected the Cr(VI) reduction. Hence, the photocatalytic Cr(VI) reduction was observed to be highest up to 95% at bended(modified) Ti mesh and lowest HRT. Especially, Ti mesh was more effective as NTT substrate in this research.

Developing a Testing Method for Antimicrobial Efficacy on TiO2 Photocatalytic Products

  • Kim, Jee-Yeon;Park, Chang-Hun;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • 제13권3호
    • /
    • pp.136-140
    • /
    • 2008
  • $TiO_2$ photocatalyst has been known to exhibit a notable disinfecting activity against a broad spectrum of microorganisms. A lot of commercial $TiO_2$ photocatalyst products have been developed for antimicrobial purposes. However, a standard method has not yet been proposed for use in testing antimicrobial activity. In this study, we developed a $TiO_2$ photocatalytic adhesion test method with film as the standard testing method for the evaluation of antimicrobial activity. This method was devised by modifying the previous antimicrobial products test method, which has been widely used, and considering the characteristics of $TiO_2$ photocatalytic reaction. The apparatus for testing the antimicrobial activity was composed of a Black Light Blue (BLB) lamp as UV-A light source, a Petri dish as the cover material, and a polypropylene film as the adhesion film. The standard $TiO_2$ photocatalyst sample, Degussa P25 $TiO_2$ - coated glass, could only be used once. The optimal initial concentration of the microorganism, proper light intensity, and light irradiation time were determined to be $10^6$ CFU/mL, 1.0 mW/$cm^2$, and 3 hr, respectively, for testing and evaluating antimicrobial activity on the $TiO_2$ surface.

UV-TiO$_2$ 광촉매 기반의 공기 정화 시스템의 운전조건에 대한 연구 (A Study on the Operational Variables of the UV-TiO$_2$ Based Photocatalytic Air Cleaning System)

  • 한창석;장혁상
    • 대한환경공학회지
    • /
    • 제30권3호
    • /
    • pp.293-301
    • /
    • 2008
  • UV-TiO$_2$ 광촉매를 이용한 공기 정화 시스템에 운전조건에 대한 연구가 수행되었다. 이 연구에서 시스템의 운영 조건이 바뀜에 따른 오염물질 제거 특성을 관찰하기 위해 덕트 형태의 반응기를 제작하고, 스테인레스 격자망에 TiO$_2$를 코팅하였다. 또한 benzene을 이용하여 UV/TiO$_2$ 공정으로 유입농도를 변화시키고, 반응기로 들어오는 유량을 조절하여 TiO$_2$를 코팅한 스테인레스 격자망을 부착한 평판에서의 유속을 변화시켰으며, 코팅한 TiO$_2$ 광촉매량을 변화시키고, 일정한 양의 TiO$_2$ 광촉매를 코팅한 면적을 변화시켰으며, UV light intensity를 변화시켜 그에 따른 영향을 관찰하였다. 모든 실험에서의 상대습도는 55%, 반응기 온도는 45$^{\circ}C$를 유지하였다. 실험의 결과를 살펴보면, benzene의 유입농도가 증가할수록 제거효율이 감소하였고, 유속이 느려질수록, 즉 농도 경계층 두께(concentration boundary layer thickness)가 증가할수록, 코팅한 광촉매량, 광촉매를 코팅한 면적, 조사한 UV 램프의 intensity가 증가할수록 benzene 제거효율이 증가하였다. 본 연구 자료를 바탕으로 실내 공기 중 저농도의 VOCs를 대상으로 공기 정화 시스템을 설계할 경우 유용하게 적용할 수 있는 자료를 제시할 수 있다고 판단된다.

광촉매 TiO2의 반응활성 비교 . 평가 기준에 관한 연구 (A Study on Comparison and Evaluation Standard of Photocatalytic Activity for Commercial TiO2)

  • 이상진;홍성창
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.801-808
    • /
    • 2008
  • This study was investigated experimental condition which is able to evaluate photocatalytic activity of various commercial $TiO_2$. The experiments were performed for three representative substances (ethanol, phenol and methylene blue) and four kinds of commercial $TiO_2$, under the experimental conditions such as pH, reactant concentration, amount of $TiO_2$, reaction time and UV intensity. The optimum experimental conditions to evaluate photocatalytic activity were as follows : for ethanol, the initial concentration 1000 ppm, initial pH 8, $TiO_2$ loadings 0.1 wt%, and reaction time 90 minutes: for phenol, the initial concentration 200 ppm, initial pH 8, $TiO_2$ loadings 1 wt%, and reaction time 60 minutes: for methylene blue, the initial concentration 200 ppm, initial pH 4, $TiO_2$ loadings 0.5 wt%, and reaction time 30 minutes.

바인더젯 3D 프린팅을 위한 TiO2 입자를 함유한 시멘트 기반 재료의 기계적 성능 및 광촉매 특성 분석 (Characterization of mechanical and photocatalytic performance on cement-based materials with TiO2 particles for binder jet 3D printing)

  • 유준성;리패기;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.69-70
    • /
    • 2023
  • The development of advanced 3D printing technologies has opened up new opportunities for customized digital designs in the construction industry. Using nano- and micro-scale additives is expected to improve the performance of cement-based materials in 3D printing. TiO2 particles have been widely used as reinforcing additives in cement-based materials. Therefore, this study aims to investigate the application of cement-based materials containing multi-size TiO2 particles in binder jet 3D printing and the effect of different-size TiO2 particles on the performance of printed samples. TiO2 particles exhibit an excellent filling effect, which increases the density of the printed samples and promotes hydration, thereby improving the compressive strength of the samples. In addition, larger TiO2 particles exert more pronounced filling and photocatalytic effects on the resulting samples.

  • PDF