• Title/Summary/Keyword: photocatalysis

Search Result 266, Processing Time 0.028 seconds

Visible Light-based Photocatalytic Degradation by Transition Metal Oxide (전이 금속 산화물을 이용한 가시광선 기반 광촉매 분해)

  • Lee, Soomin;Park, Yeji;Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.299-307
    • /
    • 2019
  • Photocatalysis is an environment friendly technique for degrading organic dyes in water. Tungsten oxide is becoming an active area of research in photocatalysis nanomaterials for having a smaller bandgap than the previously favored titanium dioxide. Synthesis of hierarchical structures, doping platinum (Pt), coupling with nanocomposites or other semiconductors are investigated as valid methods of improving the photocatalytic degradation efficiency. These impact the reaction by creating a redshift in the wavelength of light used, effecting charge transfer, and the formation/recombination of electron-hole pairs. Each of the methods mentioned above are investigated in terms of synthesis and photocatalytic efficiency, with the simplest being modification on the morphology of tungsten oxide, since it does not need synthesis of other materials, and the most efficient in photocatalytic degradation being complex coupling of metal oxides and carbon composites. The photocatalysis technology can be incorporated with water purification membrane by modularization process and applied to advanced water treatment system.

Numerical Simulation of Flows inside a Photocatalysis Air Cleaning System for Performance Assessment (광촉매 공기청정 시스템 성능예측을 위한 시스템 내부 유동현상에 관한 수치모사)

  • Sohn, Deok-Young;Lee, Du-Hwan;Gill, Jae-Heung;Choi, Yun-Ho;Kim, Dong-Hyun
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.141-149
    • /
    • 2002
  • In the present study, flow fields inside a photocatalysis air cleaning system have been investigated to obtain the data for optimum design of the system. For this investigation, we first predicted the pressure drop of a photocatalysis filter. Based on this calculation, we replaced the filter by the porous media and analysed the performance of the entire system. This porous media assumption could predict characteristics of the cylindrical photocatalysis filter within 1%. Two cases of the cylindrical filter were considered in the present calculations. The first case had an inside diameter of 6 mm, while the second case had an inside diameter of 20 mm. It was found that the first case of filter showed a pressure drop three times higher than that of the second case. In addition, the cylindrical filter equipped with a housing to hold a number of cylinders in a bundle was also analyzed. When the housing was present, the pressure drop increased. It was found that the pressure drop is 8 times higher than that of the case when the housing was not equipped.

  • PDF

Decomposotion of EtOH and Oxidation of H2S by using UV/Photocatalysis System (UV/Photocatalysis 시스템을 이용한 EtOH의 분해 및 H2S의 산화)

  • Kim, Jin-Kil;Kim, Sung-Su;Hong, Sung-Chang;Lee, Eui-Dong;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.297-302
    • /
    • 2013
  • Enhancement of photocatalytic activity of UV/photocatalysis was carried out to oxidize the gaseous $H_2S$ in a tubular reactor coated with photocatalyst of sol type $TiO_2$. EtOH was used as the standard material to select the photocatalyst, and it was confirmed that the reactor activity was dependent on the coated surface characteristics. The selected photocatalytic reactor, which coated with STS-01, showed about 80% conversion when the gas linear velocity was 0.01 m/s and relative humidity was 40%. However, the conversion level of the reaction decreased significantly with increasing gas linear velocity. Pt was loaded on the photocatalyst to enhance and maintain the performance of the reactor, which enhanced the conversion level of $H_2S$ more than 95% under the same experimental condition.

An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure (광촉매 콘크리트 도로 구조물의 효율적 시공방법에 대한 실험적 연구)

  • Hong, Sung Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : About 35% of air pollutant is occurred from road transport. NOx is the primary pollutant. Recently, the importance of NOx removal has arisen in the world. $TiO_2$ is very efficient for removing NOx by photocatalytic reaction. The mechanism of removing NOx is the reaction of photocatalysis and solar energy. Therefore, $TiO_2$ in concrete need to be contacted with solar radiation to be activated. In general, $TiO_2$ concrete are produced by substitute $TiO_2$ as a part of concrete binder. However, 90% of $TiO_2$ in the photocatalysis can not contacted with the pollutant in the air and solar radiation. Coating and penetration method are attempted as the alternative of mixing method in order to locate $TiO_2$ to the surface of structure. METHODS : The goal of this study was to attempt to locate $TiO_2$ to the surface of concrete, so we can use the concrete in pavement construction. The distribution of $TiO_2$ along the depth were confirmed by basing on the comparison of $TiO_2$ compare by using the EDAX(Energy Dispersive X-ray Spectroscopy). RESULTS : $TiO_2$ were distributed within 3mm from concrete surface. This distribution of $TiO_2$ is desirable, since the $TiO_2$ induce photocatalysis are located to where they can be contacted with the air pollutant and solar radiation. CONCLUSIONS : Nano size $TiO_2$ is easily penetration in the top 3mm of concrete surface. By the penetration $TiO_2$ concrete can be produced with the use of only 10% of $TiO_2$, by comparing the mixing types.

Catalytic Oxidation of VOCs using Photocatalysis (광촉매반응을 이용한 VOCs의 촉매산화)

  • 이승범;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2003
  • This study was progressed in photocatalysis of VOCs using $UV/TiO_2$ which was a benign process environmentally. The experiments were peformed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time. The inlet concentration of VOCs was changed 50, 100 and 200 ppmv, and amount of $H_2O$ was changed 0, 500 and $1000{\;}mg/m^3$, respectively. The deep conversion was increased as the inlet concentration decreased, and the amount of $H_2O$ increased. The deep conversion of benzene had the highest value at $1000{\;}mg/m^3${\;}H_2O$ and 50 ppmv of inlet concentration. The reactivity of reactants was decreased in order benzene > toluene > m-xylene. Also, the photocatalytic deep conversion was increased as residence time increased, because the contact time between reactants and catalyst was increased. In this study, intermediates had not found by GC/MSD analysis. Therefore, the reactants were completely converted to $H_2O{\;}and{\;}CO_2$.

Study on the characteristics of optical fiber for photocatalytic system (광촉매 반응 시스템을 위한 광섬유 광특성 조사)

  • Jeong, Hee-Rok;Joo, Hyun-Ku;Park, Sang-Eun;Jun, Myung-Seok;Auh, Chung-Moo;Moon, Il
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2001
  • In this study, the characteristics of optical fibers for the application in photocatalytic system was investigated using the intentionally designed accessories for spectrometer and radiometer to resolve the problems associated with the conventional system such as cost and structural restrictions from artificial lamp usage, to broaden the application fields into underground, and to utilize solar light in the future. To do this two kinds of optical fibers, plastic optical fiber (POF) and quartz optical fiber (QOF) were compared in terms of characteristics related with light transmittance and absorption and reactivity in TCE degradation.

  • PDF

A Numerical Analysis of the Abatement of VOC with Different Photocatalytic Honeycomb Filters (광촉매 필터형상에 따른 휘발성 유기화합물의 제거에 관한 수치해석적 연구)

  • 류무성;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study has been numerically conducted to investigate the removal efficiency of Volatile Organic Compound (VOC) for different photocatalytic honeycomb filters. Recently, the photocatalysis is being applied to air-cleaner, air-conditioner and vacuum-cleaner with the capability of air-purification, sterilization and antibiosis. However, photocatalysis is less efficient than other methods for removing VOC except in the case of low concentration. So far most of studies have focused on an improvement of the photocatalytic materials, but this study have placed emphasis on the improvements of shape of photocatalytic honeycomb filter. UV irradiation, concentration profile and pressure drop have been investigated for different cross sections of filters and for different filter lengths. Light intensity is dropped sharply with increasing distance from the UV-lamp, and becomes very low in the middle of the filters. Since photocatalytic reaction rate is a function of light intensity, VOC concentration gradient might be small in the middle of long filters. Thus, most of reaction have risen within only three times of dimensionless axial distance. These results can be used effectively for the design of advanced photocatalytic honeycomb filters.

Hybrid Water/Wastewater Treatment Process of Membrane and Photocatalyst (분리막 및 광촉매의 혼성 정수/하수 처리 공정)

  • Park, Jin Yong
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.143-156
    • /
    • 2018
  • In this review article, hybrid water/wastewater treatment processes of membrane and photocatalyst were summarized from papers published in various journals. It included (1) membrane photoreactor (MPR), (2) fouling control of a membrane coupled photocatalytic process, (3) photocatalytic membrane reactors for degradation of organic pollutants, (4) integration of photocatalysis with membrane processes for purification of water, (5) hybrid photocatalysis and ceramic membrane filtration process for humic acid degradation, (6) effect of $TiO_2$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, (7) hybrid photocatalysis/submerged microfiltration membrane system for drinking water treatment, (8) purification of bilge water by hybrid ultrafiltration and photocatalytic processes, and (9) Hybrid water treatment process of membrane and photocatalyst-coated polypropylene bead.

Self-cleaning measurements on tiles manufactured with micro-sized photoactive TiO2

  • Bianchi, C.L.;Gatto, S.;Nucci, S.;Cerrato, G.;Capucci, V.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2013
  • Heterogeneous photocatalysis is a rapidly developing field in environmental engineering. It has a great potential to cope with the increasing pollution in the air. The addition of a photocatalyst to ordinary building materials such as tiles, concrete, paints, creates environmental friendly materials by which air pollution or pollution of the surface itself can be controlled and diminished. This work reports the results of the laboratory research, especially carried out towards air purifying action and self-cleaning measurements. In particular the research was focused on the study of the photocatalytic behavior of industrially prepared tiles produced starting from commercial micro-sized $TiO_2$. Air purification action has been investigated through NOx degradation tests. On the contrary, the degradation of pollution at the surface, also called as self-cleaning action, is verified by the degradation of two different organic dyes: Rhodamine B (red color) and Metanil yellow (yellow).