• 제목/요약/키워드: photocatalysis

검색결과 266건 처리시간 0.028초

광반응 및 광촉매 반응을 이용한 simazine의 분해 및 독서저감에 관한 연구 (A Study on the Degradation and the Reduction of Acute Toxicity of Simazine Using Photolysis and Photocatalysis)

  • 김문경;오지윤;손현석;조경덕
    • 한국환경보건학회지
    • /
    • 제35권2호
    • /
    • pp.124-129
    • /
    • 2009
  • The photocatalysis degradation of simazine, s-triazine type herbicide was carried out using circulating photo reactor systems. In order to search for the effective method to mineralize this compound into environmentally compatible products, this study compared the removal efficiencies of simazine by changing various parameters. First, under the photocatalytic condition, simazine was more effectively degraded than by photolysis and $TiO_2$ only condition. With photocatalysis, 5 mg/l simazine was degraded to approximately 90% within 30 min, and completely degraded after 150 min. Ionic byproducts such as ${NO_2}^-$, ${NO_3}^-$, and $Cl^-$ were detected from the photocatalysis of simazine, however, the recoveries were poor, indicating the presence of organic intermediates rather than the mineralization of simazine during photocatalysis. Two bioassays using V. fischeri and D. magna were employed to measure the toxicity reduction in the reaction solutions treated by both photocatalysis and photolysis. Simazine and its photocatalysis treated water did not exert any significant toxicity to V. fischeri, marine bacterium. However, the acute toxicity test using D. magna indicates that initial acute toxicity ($EC_{50}$ = 57.30%) was completely reduced ($EC_{50}$ = 100%) after 150 min under both photocatalysis and photoysis of simazine. This results indicates that photocatalysis and photolysis of simazine reduced the acute toxicity through mineralization.

수용액에 용출된 에폭시수지 화합물의 TiO$_2$ 광분해효과와 생물독성에 미치는 영향 (Effects of TiO$_2$ Photodegradation on Leaching from Epoxy Resin Chemical in Water and Biological Toxicity)

  • 여민경;조은정
    • Environmental Analysis Health and Toxicology
    • /
    • 제19권3호
    • /
    • pp.271-278
    • /
    • 2004
  • Epoxy resins are mostly used as a molding material for drinking water tank. Bisphenol A is used at a constituent material for epoxy resins and is widely suspected to act as an endocrine disrupter. In this study, we investigated embryo hatching in zebrafish reared in water undergone leaching process of expoxy resin, and found a decreased survival rate. Bisphenol A eluted from epoxy resin in drinking water tank was completely degraded by TiO$_2$ photocatalysis. We detected 7.8 ng/ml of bisphenol A in epoxy resin tank, and observed that the concentration was undetectable after 48h photocatalysis over TiO$_2$. There was no toxicity in hatching rates in zebrafish and morphogenesis after photocatalysis. The effect of TiO$_2$ photocatalytic reactions on the catalase activities in the f]y stage of zebrafish was also examined. At 1 week post hatching, cataiase activities were higher both in the group of epoxy resin with 48 h TiO$_2$ photocatalysis and in the TiO$_2$ photocatalysis for 48 hours were higher than control group. However catalase activities of the treatment group of epoxy resin by TiO$_2$ photocatalysis for 48 hours were similar to control in 5 weeks post hatching fries. In conclusion, the toxicity of TiO$_2$ photocatalysis was not observed in this zebrafish.

광반응과 광촉매 반응을 이용한 Diazinon 농약의 분해 기전과 독성 평가에 관한 연구 (A Study on the Degradation Mechanism of Diazinon and the Acute Toxicity Assessment in Photolysis and Photocatalysis)

  • 오지윤;김문경;손현석;조경덕
    • 대한환경공학회지
    • /
    • 제30권11호
    • /
    • pp.1087-1094
    • /
    • 2008
  • Diazinon은 전 세계적으로 많이 사용하고 있는 유기인계 살충제이며 특히 한국에서 많이 사용하고 있다. 본 연구에서는 광반응과 광촉매 반응을 이용하여 diazinon의 분해에 대하여 살펴보았다. 실험의 결과, diazinon은 인공 자외선의 경우 광반응과 광촉매 반응에서 모두 효과적으로 분해되었고, 특히 광촉매 반응시 광반응보다 더 빠른 분해 효율을 보였으나, TOC는 잘 제거되지 않았다. Diazinon의 광촉매 반응에서 발생한 이온 부산물은 질소의 경우 약 40%가 NO$_3^-$로 회수되었고, 인의 경우는 5% 정도만이 PO$_4{^{3-}}$로 회수되었다. 이에 반해, SO$_4{^{2-}}$이온은 광반응의 경우는 50%, 광촉매 반응의 경우 100%의 회수율을 보였다. 광반응이나 광촉매 반응에 의해서 diazinon의 이온성 부산물의 회수율과 TOC의 분해율이 낮은 이유는 반응에 의한 유기부산물의 생성을 의미한다. 이의 확인을 위한 GC/MS와 LC/MS의 분석 결과 diazinon의 광반응 및 광촉매 반응에 의한 부산물로 diazoxon과 2-isopropyl-4-methyl-6-hydroxy pyrimidine (IMP)이 유기 부산물로 확인되었다. 광촉매 반응에 의하여 처리된 용액의 잔류독성을 평가하기 위하여 D. magna를 이용하여 처리수의 급성 독성을 알아본 결과, 초기 diazinon의 EC$_{50}$값은 69.6%, 광촉매 반응에 의한 180분 후의 처리수에서는 13.2%로 오히려 독성이 증가하는 것을 관찰할 수 있었고, 최종 처리수인 360분 후의 처리수에서는 독성이 감지되지 않았다. 이는, 광촉매를 통한 처리시, 독성이 diazinon보다 큰 유기부산이 생성 되었다가 계속 반응이 진행되면서 이들 부산물도 분해되거나 무기화됨을 의미한다.

The Effect of Photocatalysis using $TiO_2$ and UV for COD Degradation of Wastewater in Linerboard Mill

  • Kang, Kwang-Ho;Kim, Hyoung-Jin
    • 펄프종이기술
    • /
    • 제40권5호
    • /
    • pp.53-59
    • /
    • 2008
  • This study was carried out to investigate the effect of photocatalysis using $TiO_2$ and UV applied for the COD reduction of wastewater in linerboard mill. Trials were done to obtain the optimum addition amounts of $TiO_2$ and $H_2O_2$ to the wastewater and find an appropriate pH condition for photocatalysis on $TiO_2$ for degrading COD. The photocatalytic reaction was applied to the wastewater collected after secondary activated sludge treatment in WWTP of linerboard mill. The optimum application of photocatalysis reaction was obtained under the addition conditions of 2 g/L of $TiO_2$ and 200 mg/L of $H_2O_2$ at pH 3.0, respectively. The removal efficiency of $SCOD_{Cr}$ by photocatalytic treatment was 86.4 % and higher than Fenton treatment in which removal efficiency was 67.4 %. It was concluded that the photocatalytic process using $TiO_2$ and UV could be applied to the wastewater treatment in linerboard mill and also to the dramatic drop-off in NBDCOD load from wastewater of tertiary treatment in WWTP.

The Dual-frequency (20/40 kHz) Ultrasound Assisted Photocatalysis with the Active Carbon Fiber-loaded Fe3+-TiO2 as Photocatalyst for Degradation of Organic Dye

  • Xiong, Shaofeng;Yin, Zhoulan;Zhou, Yuanjin;Peng, Xianzhong;Yan, Wenbin;Liu, Zhixiong;Zhang, Xiangyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3039-3045
    • /
    • 2013
  • Dual-frequency ultrasound assisted photocatalysis (DUAP) method was proposed to degrade a stable organic model effluent, cresol red (CR), using the prepared $Fe^{3+}$-doped $TiO_2$ with active carbon fiber loading ($Fe^{3+}-TiO_2/ACF$) as photocatalyst. The influence of key factors, including Fe doping amount and power density of dual-frequency ultrasounds (20/40 kHz), on the degradation efficiency was investigated. The degradation efficiency rises to 98.7% in 60 min accompanied by the color removal of CR liquid samples from yellow to colorless transparent at optimal conditions. A synergy index of 1.40 was yielded by comparison with single ultrasound assisted photocatalysis (SUAP) and the photocatalysis without ultrasound assisted (UV/$TiO_2$), indicating that a clear synergistic effect exists for the DUAP process. Obvious enhancement of degradation efficiency for the DUAP process should be attributed to production of large amount of free radicals by strong cavitational effects of dual ultrasounds.

광촉매반응과 그 응용 (Photocatalysis and Its Applications)

  • 정경수;이호인
    • 대한화학회지
    • /
    • 제41권12호
    • /
    • pp.682-710
    • /
    • 1997
  • 태양에너지의 화학에너지로의 전환에 의하여 에너지를 경제적으로 얻을 수 있고, 유용한 물질의 합성뿐만 아니라 환경오염물질의 분해에도 적용될 수 있는 광촉매반응은 기존의 불균일계 촉매반응에 비하여 많은 장점을 지닌 반응이다. 본 고에서는 광촉매반응의 기본원리와 촉매의 개질, 그리고 물분해에 의한 수소 생성반응과 환경적 응용을 중심으로 하여 불균일계 및 광촉매반응에 대하여 고찰한다.

  • PDF

광촉매반응의 응용 (Application of Photocatalysis)

  • 이근대;이호인
    • 공업화학
    • /
    • 제3권1호
    • /
    • pp.35-45
    • /
    • 1992
  • 촉매화학의 새로운 한 분야인 광촉매반응에 대한 관심은 계속적으로 증가하고 있다. 최근 광촉매 반응은 값싸고 재생 가능한 에너지원과 화학적으로 유용한 물질을 얻을 수 있는 새로운 방법으로 주목을 받게 되었다. 본고에서는 광촉매반응의 기본원리 그리고 여러가지 불균일계 및 균일계 광촉매반응을 소개한다. 또한 앞으로의 광촉매반응의 응용에 있어서의 문제점과 전망에 대해 알아본다.

  • PDF

광촉매공정과 초음파를 접목시킨 광촉매공정에 의한 Benomyl의 분해 비교 (The Comparison of Photocatalysis and Sonophotocatalysis for Benomyl Degradation)

  • 안상우;박재홍;조일형;장순웅
    • 한국물환경학회지
    • /
    • 제22권4호
    • /
    • pp.585-589
    • /
    • 2006
  • Comparison between photocatalysis and sonophotocatalysis were performed in lab-scale experiments for the treatment of benomyl. The effect of operational parameters, i.e., initial benomyl concentration, $TiO_2$ concentration, $H_2O_2$ concentration on the degradation rate of aqueous solution of benomyl has been examined. The optimal conditions for photocatalysis and sonophotocatalysis processes were determined: initial Benomyl concentration was 3 mg/L, the concentration of $TiO_2$ was 2 g/L and $H_2O_2$concentration was 1.5 mM. Under the optimal conditions, sonophotocatalysis was effective for inducing faster degradation of the benomyl.

오존과 광촉매를 이용한 조류 부산물중 Geosmin 제거에 관한 연구 (A Study on Geosmin Removal of Algae Byproducts by Ozonation and Photocatalysis)

  • 김은호;성낙창;최용락
    • 생명과학회지
    • /
    • 제9권5호
    • /
    • pp.581-589
    • /
    • 1999
  • This study was carried out to compare ozonation with photocatalysis degradation for removal Geosmin of algae byproduct. The change of pH was decresed from 7.02 to 2.8 after contact time 480 minute for ozonation. In case of UV-germicidal lamp, pH was very quickly increased from 7.02 to 7.5, but Halogen lamp did very slowly change pH. Geosmin degradation ratio was as following, UV-germicidal lamp/TiO2(100mg/L) O3>UV-germicidal lamp/TiO2(50mg/L)>UV-germicidal lamp(10W)>halogen lamp(50W). Instead of TiO2 suspension solution, Geosmin degradation ratio was very low using hollow bead and pellet as coated TiO2. As a result of identifing byproducts, ozonation generated three species of aldehyde such as 3-Heptanone and three species of alcohol such as Heptanal, but photocatalysis formed 1, 14-Tetradecanediol infinitesimally.

  • PDF

Sonophotocatalysis와 Photocatalysis를 이용한 Chloroform의 광산화 (Comparative Sonophotocatalysis and Photocatalysis for Chloroform Degradation)

  • 박재홍;조일형
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.263-266
    • /
    • 2005
  • Comparison between photocatalysis (UV+$TiO_2$) and sonophotocatalysis (Sonication+UV+$TiO_2$) were performed in lab-scale experiments for the treatment of chloroform. The effect of operational parameters, i.e., initial chloroform concentration, $TiO_2$ concentration, UV light intensity and sonication time on the degradation rate of aqueous solution of chloroform has been examined. The optimal conditions for photocatalysis and sonophotocatalysis processes were determined: initial chloroform concentration was 25 mg/L, the concentration of $TiO_2$ was 200 mg/L and UV light intensity was $6.630 mW/cm^2$, respectively. The optimal sonication time on sonophotocatalysis process was 90 min. Under the optimal conditions, sonophotocatalysis was effective for inducing faster degradation of the chloroform.