• Title/Summary/Keyword: photobioreactor

Search Result 102, Processing Time 0.02 seconds

The Growth Characteristics of Spirulina platensis in Cylindrical Photobioreactor (관형 광생물 반응기에서의 Spirulina platensis 성장 특성 연구)

  • 김용상;박호일;김동건;박대원
    • KSBB Journal
    • /
    • v.18 no.4
    • /
    • pp.277-281
    • /
    • 2003
  • The study of growth characteristics for Spirulina platensis were carried out in 400 mL cylindrical photobioreactor and the effects of carbon dioxide concentration and flow rate during the growth of Spirulina platensis were investigated. The results showed that relatively low carbon dioxide concentration and high flow rate forced the growth of Spirulina platensis in experiment conditions. The pH analysis showed that different carbon dioxide concentration might form particular aqueous carbonate system in culture medium and affect the growth of Spirulina platensis. In addition, the possibility of limiting light radiation by cell density was investigated by the analysis of specific growth rate. The result intimated that the cause of decrease of specific growth rate at exponential phase was due to the limitation of light radiation by Spirulina platensis cell density in cylindrical photobioreactor.

Process Development of Algae Culture for Livestock Wastewater Treatment Using Fiber-Optic Photobioreactor (축산폐수 처리를 위한 광섬유 생물반응기를 이용한 조류 배양 공정 개발)

  • 최정우;김영기;류재홍;이우창;이원홍;한징택
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • In this study, algae cultivation using the photobioreactor has been applied to remove the nitrogen and phosphorus compounds in the wastewater of the livestock industry. The optimal ratio of nitrate and ortho-phosphate concentration was found for the enhancement of removal efficiency. To achieve the high density culture of algae, the photobioreactor consisted of optical fibers wes developed to get the sufficient light intensity. The light could be illuminated uniformly from light source to the entire reactor by the optical fibers. The structured kinetic model was proposed to describe the growth rate, consumption rate of nitrates and ortho-phosphates in algae culture. The self-organizing fuzzy logic controller incorporated with genetic algorithm was constructed to control the semi-continuous wastewater treatment system. The proposed fuzzy logic controller was applied to maintain the nitrated concentration at the given set-point with the control of wastewater feeding rate. The experimental results showed that the self-organizing fuzzy logic controller could keep the nitrate concentration and enhance algae growth.

  • PDF

Design and Fabrication of Light-guiding Plate for a Photobioreactor by Using Sunlight and Linear Fresnel Lens (태양광과 선형 프레넬 렌즈를 이용한 광생물반응기용 도광판 설계 및 제작)

  • Kim, Hun;Shin, Seong Seon;Hwang, Min Yong;Lim, Hyon Chol;Kim, Gwang Ho;Kim, Jong Tye;Jeong, Sang Hwa;Park, Jong Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.143-147
    • /
    • 2013
  • We present results of the optical design and fabrication of a light-guiding plate (LGP) for a photobioreactor by using sunlight and a linear Fresnel lens. LGP patterns were designed by optical simulations with an illumination design tool, LightTools, and fabricated by using a computerized numerical control machine. Optical characteristics of average deviation of illuminance distribution and light throughput efficiency were measured and compared with simulation results.

On-off Control for Continuous Culture of Microalgae in Flat Panel Photobioreactor (평판형 광생물반응기의 미세조류 연속배양을 위한 On-off 제어)

  • Kim, Jae-Hyeok;Yoon, Chung-Man;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.237-243
    • /
    • 2016
  • Recently, technologies that produce biofuels from microalgae are being studied worldwide. It is necessary to significantly reduce the production costs of biofuels from microalgae for economic reasons. In this study, the growth curve of the microalgae was obtained using the batch-culture method, and the specific growth rate was predicted using the regression method. Based on the culture conditions of the estimated specific growth rate, the turbidity of the microalgae in the flat panel photobioreactor (PBR) was measured. Furthermore, an on-off control scheme was applied to the flat panel PBR in order to culture the microalgae continuously on the basis of turbidity. The parameters of the on-off control system were displayed by LabView. The on-off scheme of peristaltic pump was controlled based on the turbidity in the PBR. In addition, the turbidity values of growth curves were compared and analyzed in the continuous culture process using the on-off controller.

Review of Advances in Biological $CO_2$Mitigation Technology

  • Lee, Jin-Suk;Lee, Joon-Pyo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.354-359
    • /
    • 2003
  • $CO_2$fixation by microalgae has emerged as a promising option for $CO_2$mitigation. In-tensive research work has been carried out to develop a feasible system for removing $CO_2$from industrial exhaust gases. However, there are still several challenging points to overcome in order to make the process more practical. In this paper, recent research activities on three key technologies of biological $CO_2$fixation, an identification of a suitable algal strain, development of high efficient photobioreactor and utilization of algal cells produced, are described. Finally the barriers, progress, and prospects of commercially developing a biological $CO_2$fixation process are summarized.

The Combined Effects of Carbon Dioxide Concentration and Irradiation on Growth of the Green Alga Haematococcus pluvialis

  • Choe, Yun-Lee;Yun, Yeong-Sang;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.181-184
    • /
    • 2001
  • The biological fixation of carbon dioxide using microalgae have many advantages over chemicals and remove carbon dioxide simultaneously. A ketocarotenoid astaxanthin is hyper-accumulated in the green freshwater microalga, Haematococcus pluvialis. In the present study, the combine effects of carbon dioxide concentration and light intensity on the growth of H. pluvilais were investigated. The carbon dioxide concentration above 10% caused a severe inhibition and around 5% is optimal for growth. Adaptation to high concentration of carbon dioxide enhanced the $CO_2$ tolerance. Specific growth rate calculated differently based upon cell number or dry weight because of the distinctive life cycle patterns of H. pluvialis : small-sized motile green cell and thick cell walled red cyst cell. Based on the light dependence of H. pluvialis, internally illuminated air-lift photobioreactor was designed and operated. Gradual increase of light supply gave more active growth and more effective productivity of astaxanthin than constant light supply.

  • PDF

A Theoretical Consideration on Oxygen Production Rate in Microalgal Cultures

  • Kim, Nag-Jong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.5
    • /
    • pp.352-358
    • /
    • 2001
  • Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.

  • PDF

The Behavior of a $CO_2$Fixation Process by Euglena Gracilis Z with a Photobioreactor (광반응기와 Euglena gracilis Z를 이용한 이산화탄소 고정화 공정의 거동 특성)

  • 신항식;채소용;황응주;임재림;남세용
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.644-648
    • /
    • 2000
  • Biological fixation of carbon dioxide using microalgae is known as an effective CO$_2$reduction technology. However, many environmental factors influence microalgal productivity. Optimal cultivation factors were determined for the green alga, Euglena gracilis Z, which offers high protein and vitamin E content for animal fodder. In batch culture in a photovioreactor, it was found that theinitial pH, temperature, CO$_2$concentration in air, and light intensity during the optimal cultivating conditions were 3.5, 27$^{\circ}C$, 5-10% and 520 ${\mu}$mol/㎡/s, respectively. When tap water and freshwater were used as cultivating media unsterilized tap water was found to be effective. A kinetic model was considered to determine the relationship between the specific growth rate and the light intensity. The half-velocity coefficient (K(sub)I) in the Monod model under photoautotrophic conditions was 978.9 ${\mu}$mol/㎡/s.

  • PDF

Effect of Liquid Circulation Velocity and Cell Density on the Growth of Parietochloris incisa in Flat Plate Photobioreactors

  • Changhai Wang;Yingying Sun;Ronglian Xing;Liqin Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • For more accurately describing the durations of the light and the dark phases of micro-algal cells over the whole light-dark cycle, and probing into the relationship between the liquid circulation time or velocity, the aeration rate and cell density, a series of experiments was carried out in 10 cm light-path flat plate photobioreactors. The results indicated that the liquid flow in the flat plate photobioreactor could be described by liquid dynamic equations, and a high biomass output, higher content and productivity of arachidonic acid, $70.10\;gm^{-2}d^{-1},\;9.62\%$ and 510.3 mg/L, respectively, were obtained under the optimal culture conditions.