The Growth Characteristics of Spirulina platensis in Cylindrical Photobioreactor

관형 광생물 반응기에서의 Spirulina platensis 성장 특성 연구

  • 김용상 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 박호일 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 김동건 (한국과학기술연구원 수질환경 및 복원연구센터) ;
  • 박대원 (한국과학기술연구원 수질환경 및 복원연구센터)
  • Published : 2003.08.01

Abstract

The study of growth characteristics for Spirulina platensis were carried out in 400 mL cylindrical photobioreactor and the effects of carbon dioxide concentration and flow rate during the growth of Spirulina platensis were investigated. The results showed that relatively low carbon dioxide concentration and high flow rate forced the growth of Spirulina platensis in experiment conditions. The pH analysis showed that different carbon dioxide concentration might form particular aqueous carbonate system in culture medium and affect the growth of Spirulina platensis. In addition, the possibility of limiting light radiation by cell density was investigated by the analysis of specific growth rate. The result intimated that the cause of decrease of specific growth rate at exponential phase was due to the limitation of light radiation by Spirulina platensis cell density in cylindrical photobioreactor.

관형 광생물 반응기를 이용하여 반응기내로 들어가는 $CO_2$ 혼합기체의 농도와 유속에 따른 S. platenis 성장 특성을 분석하였다. S. platensis 성장 곡선을 분석한 결과 3% $CO_2$ 혼합기체를 150 ml/min의 유속으로 흘려 줄 때 가장 빠른 성장 특성을 보여 주었다. 반면 6% $CO_2$ 혼합기체 50 ml/min 경우는 본 실험 조건 중 S. platenis 성장에 유리하지 않음을 알 수 있었다. 시간에 따른 접종 배지의 pH 변화를 분석한 결과 관형 광생물 반응기내로 흘려주는 유속에 상관없이 $CO_2$ 혼합기체 농도에 따라 일정한 pH를 형성함을 알 수 있었다. 이는 접종 배지내에 일정하게 흘려주는 $CO_2$ 기체로 인해 배지내에 탄산염 시스템이 형성됨을 예측할 수 있었다. 또한 시간에 따른 비성장 속도를 분석한 결과 모든 실험 조건에서 지수성장기 동안 비성장 속도가 감소하는 경향을 보였으며 이는 광합성 미세조류인 S. platenis의 농도 증가가 오히려 관형 광생물 반응기로 복사되는 빛 에너지의 투과도를 약화시켜 S. platenis의 성장을 저해 한다고 볼 수 있다.

Keywords

References

  1. Reprot of the intergovernmental panel on climate change IPCC : Climate Change
  2. Kor. J. of Environ. Biol. v.16 no.4 Biological fixation of global warming gas by microalgae Oh,H.M.;J.S.Kim;S.J.Lee
  3. Kor. J. Appl. Microbiol. Biotechnol. v.25 no.3 Biological fixation of carbon dioxide using photosynthetic microalga Chorococcum littorale Kim,T.H.;K.D.Sung;J.S.Lee;J.Y.Lee;S.J.Oh.;H.Y.Lee
  4. J. Kor. Fish. Soc. v.31 no.3 Growth and fatty acid composition with growth conditions for Spirulina platensis Joo,D.S.;M.G.Cho;R.Buchhloz;E.H.Lee
  5. J. Sci. of Food and Agriculture v.47 Spirulina : A soruces of dietary gamma-lionlenic acid Rippka,R.;J.Deruelles;J.B.Waterbury;M.Herdman;P.G.Roughan
  6. Food Polocy v.9 Biotechnology for rural nutrition Babu,S.C.;B.Rajasekaran
  7. Biomass v.4 Production and utilization of the blue green algae Spirulina in India Becker,E.W.;L.V.Vanattaraman https://doi.org/10.1016/0144-4565(84)90060-X
  8. World J. of Microbiol. and Biotechnol. v.16 Modeling of growth condition for cyanobacterium Spirulina platensis Jorge,A.V.C.;A.L.Giani;I.P.A.Daniel;M.M.Guilherme;T.K.Roselini https://doi.org/10.1023/A:1008992826344
  9. Aquaculture v.217 The feasibility of industrial production of Spirulina (Arthrospira) in Southern Spain Carlos,J.;R.C.Belen;L.Diego;N.Xavier https://doi.org/10.1016/S0044-8486(02)00118-7
  10. Aquaculture v.221 Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a pedictive model of algal yield Carlos,J.;R.C.Belen;N.Xavier https://doi.org/10.1016/S0044-8486(03)00123-6
  11. Biotechnol. Prog. v.17 Scale-up and design of a pilot-plant photobioreactor for the continuous culture of Spirulina platensis Vernerey,A.;J.Albiol;C.Lasseur;F.Godia https://doi.org/10.1021/bp010010j
  12. Kor. J. Appl. Microbiol. Biotechnol. v.25 no.1 CO₂fixation and single cell protein production using blue green algae Lee,K.Y.;J.H.Park;B.S.Park
  13. Kor. J. Biotechnol. Bioeng. v.10 Kinetics of cultivating photosynthetic microalga, Spirulina platensis in an outdoor photobioreactor Sung,K.D.;J.H.Ann;J.Y.Lee.S.J.Ohh;H.Y.Lee
  14. Kor. J. Appl. Microbiol. Biotechnol. v.22 no.2 The treatment of swine wastes and the production of high protein feedstocks from photoheterotrophic growth of Spirulina platensis Sung,K.H.;J.H.Lee;Y.S.Park;H.K.Kim;H.K.Yu;S.J.Ohh;H.Y.Lee
  15. Botanica v.107 SAG-sammlung von algenkulture at the University of Gottingen Schlosser,U.G.
  16. Phytochemistry v.31 no.10 Tolerance of microalgae to high CO₂and high temperature Hanagata,N.;T.Tkaeuchi;Y.Fukeju;D.J.Barnes;I.Karube https://doi.org/10.1016/0031-9422(92)83682-O
  17. Kor. J. Biotechnol. Bioeng. v.14 no.6 The characteristics of carbon dioxide fixation by Chlorella sp. HA-1 in semi-continuous operation Lee,J.Y.;H.A.Kang;J.W.Yang
  18. Aquatic chemistry (Third edition) Werner,S.;J.M.James
  19. Principles of Fermentation Technology (Second Edition) Peter F.S.;W.Allen;J.H.Stephen
  20. Spirulina platensis (Arthrospria)(1st edition) Avigad,V.