• Title/Summary/Keyword: photo-polymer

Search Result 306, Processing Time 0.027 seconds

The Improvement of Sensing Performance of ISFET Glucose and Sucrose Sensors by Using Platinum Electrode and Photo-crosslinkable Polymers (백금전극과 감광성 고분자를 이용한 ISFET 포도당 및 자당센서의 감지성능 개선)

  • Cho, Byung-Woog;Jang, Won-Duk;Kim, Chang-Soo;Park, Lee-Soon;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.23-28
    • /
    • 1995
  • The ISFET glucose and sucrose sensors containing platinum electrode and photopolymeric enzyme membrane were fabricated. The platinum working electrode was used for the electrolysis of hydrogen peroxide, which was the other product of the enzyme reaction, to improve sensing characteristics of the sensors. In order to improve response time, photo-crosslinkable polymer(PVA-SbQ) was used to the matrix for the enzyme immobilized membrane. The characteristics of glucose and sucrose sensors were investigated according to the variation of platinum electrode area. The response time was about $3{\sim}5$ minutes and determinations of glucose and sucrose in the range of about $30{\sim}300mg/dl$ could be possible.

  • PDF

Synthesis and Characteristics of Photo-crosslinkable Hydrogel for Microbial Immobilization (미생물 고정화를 위한 광경화성 하이드로겔의 합성과 특성)

  • Kim, Cho Woong;Lee, Jung Bock;Kim, Du Hyun;Hwang, Jung Min;Cho, Chong Su;Choi, Young Hoon;Chung, Dae-Won
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.852-856
    • /
    • 1999
  • The objective of this study was to prepare hydrogel beads which were useful microbial immobilization to remove nitrogen and phosphorous in the industrial wastewater. Two different polyols(PEG, PTMG) terminated with photo-crosslinkable methacrylate groups were synthesized. Structures of the prepolymers and the UV cured hydrogels were characterized by using $^1H$-NMR and FT-IR spectroscopy. Water content, mechanical strength and pore sizes of the hydrogels having different MW of polyols and different ratios of PEG/PTMG were investigated. Hydrogels prepared from PEG(MW1000) only or the mixture of PEG(MW1000) and PTMG(MW2900) with 7:3 by weight were considered as potential candidates for the matrix for the immobilization of microorganism.

  • PDF

Photo Spacer Induced Bistable Mode Plastic PSFLCDs for High Mechanical Stability

  • Kim, Yu-Jin;Park, Seo-Kyu;Kwon, Soon-Bum;Lee, Ji-Hoon;Son, Ock-Soo;Lim, Tong-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.489-492
    • /
    • 2005
  • We report new polymer stabilized ferroelectric liquid crystal (PSFLC) cells with mechanical stability which is achievable by introducing photospacers in the cells. It was found that the mechanical st ability of the PSFLC cell was effected by introduction of photo spacers. We analyzed the dependence of mechanical stability and memory property on the density of photospacers in the PSFLC cell. The stability and memory properties of PSFLC Cells depending on photospacer density are discussed. 1. Introduction Recently, flexible displays have attracted much attention because they have remarkable advantages: thinner, lighter, non-breakable and conformable features. Flexible displays have various potential applications such as e-book and e-paper displays utilizing the distinct features. E-book and E-paper displays demand very low power consumption, so that bistable memory liquid crystal modes are required in case of flexible plastic LCDs for those application. Three kinds of memory LC modes have been developed; bistable nematic, bistable cholesteric and bistable FLC. Among them SSFLC as one of bistable FLC has big advantages such as low driving voltage, wide view angle and fast response time, SSFLC cells are, however, very weak against mechanical shock. Polymer stabilized FLC (PSFLC) has been developed to overcome the poor mechanical stability of SSFLC. PSFLC was known to have network structure that FLCs are oriented with smectic layer ordering in polymer network. The polymer network stabilizes the FLC orientation, which leads to improvement of mechanical stability of PSFLCD. A lot of studies have been done for the application of PSFLC to flexible $LCDs.^{[1{\sim}12]}$ However, it should be noted that PSFLC does not have sufficient mechanical stability for the particular applications such as smart card LCD, where LCD is highly bendable.Bead spacer was mainly used to maintain cell gap of conventional PSFLCDs. But the spacer density of it is not locally uniform in the cell, so that it is generally difficult that the PSFLCDs with bead spacers show sufficient mechanical stability. In order to more improve the mechanical stability of PSFLCDs, we introduced photospacers into PSFLCDs. In this paper, we describe the improvement of mechanical stability by introducing photospacers into PSFLCDs.

  • PDF

Synthesis and Characterization of Polyamide Having Photoreactive Group in the Backbone and its Liquid Crystal Aligning Property (광반응성 작용기를 주사슬에 갖는 폴리아미드의 합성과 특성 분석 및 액정분자의 배향 특성)

  • Jung, Eun-Young;Lee, Tae-Jin;Lee, Seung-Woo
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.350-355
    • /
    • 2011
  • A soluble polyamide containing photosensitive l,4-phenylenediacrylic acid (PDA) in main chain with biphenyl moiety was synthesized. The chemical structure of synthesized polyamide was investigated by means of $^1H$ NMR spectroscopy. The polymer was stable up to $280^{\circ}C$ and soluble in organic solvents, giving a good quality of thin films. The photoreaction of unpolarized LTV irradiated films was investigated by means of UV-vis absorption spectroscopy and FTlR spectroscopy, and liquid crystals (LCs) alignment property was examined by exposing to linearly polarized UV light (LPUVL) of 260~380 nm. The polyamide in film has excellent photoreactivity to unpolarized UV light. Direction selective photoreaction of PDA moiety in Lhe film was found to further induce nematic liquid -crystals to align along a perpendicular direction with respect to the electric vector of LPUVL, regardless of exposure energy of LPUVL. In addition, pretilt angle was measured by means of crystal rotation method. LPUVL-exposed polymer film induced the alignment of liquid-crystals (LC) with a pretilt angle of 0.2~$0.5^{\circ}$.

Properties of Polymer Nanocomposites Useful for Dental Restoration (치아수복용 고분자 나노복합체의 물성)

  • Kim, Ohyoung;Han, Sanghyuk;Seo, Kitaek;Gong, Myoung-Seon;Kim, Chang-Keun;Lim, Bum-Soon;Cho, Byeong-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.422-426
    • /
    • 2005
  • Visible-light activated polymer nanocomposites (PNC) were designed to be used for dental restoration. Hybrid-filler composed of barium silicate and nano-sized silica was adopted as a filler system. To improve the interfacial be havior of the resin matrix of bisphenol A glycerolate methacrylate/triethyleneglycol dimethacrylate, the surface of filler was hydrophobically treated with a silane coupling agent. Mechanical properties of PNC were investigated by measuring the abrasion resistance, and it was discovered that PNC showed excellent properties with an increase of nanofiller content. However, the polymerization shrinkage was consistently maintained under 3 vol% and the shrinkage continued even after photo-polymerization. In addition, a slight color difference between PNC specimens was observed with increase of nanofiller content.

Preparation of Solventless UV Curable Thermally Conductive Pressure Sensitive Adhesives and Their Adhesion Performance

  • Baek, Seung-Suk;Park, Jinhwan;Jang, Su-Hee;Hong, Seheum;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2017
  • Using various compositions of thermally conductive inorganic fillers with boron nitride (BN) and aluminum oxide ($Al_2O_3$), solventless UV-curable thermally conductive acrylic pressure sensitive adhesives (PSAs) were prepared. The base of the PSAs consists of 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and isobornyl acrylate.The compositions of the thermally conductive inorganic fillers were 10, 15, 20, and 25 phr in case of BN, and 20:0, 15:5, 10:10, 5:15, and 0:20 phr in case of $BN/Al_2O_3$. The adhesion properties like peel strength, shear strength, and probe tack, and the thermal conductivity of the prepared PSAs were investigated with different thermally conductive inorganic filler contents. There were no significant changes in photo-polymerization behavior with increasing BN or $BN/Al_2O_3$ content. Meanwhile, the conversion rate and transmittance of the PSAs decreased and their thermal stabilities increased with increasing BN content. Their adhesion properties were also independent of the BN or $BN/Al_2O_3$ content. The dispersibility of BN in the acrylic PSAs was better than that of $Al_2O_3$ and it ranked the thermal conductivity in the following order: BN > $BN/Al_2O_3$ > $Al_2O_3$.

Preparation and Properties of Coating Materials of Polydimethylsiloxane with Acrylate Groups (Acrylate기를 갖는 Polydimethylsiloxane계 코팅 액의 제조와 그 특성)

  • Bak, Seung Woo;Kang, Ho Jong;Kang, Doo Whan
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.138-143
    • /
    • 2014
  • ${\alpha},{\omega}$-Hydroxypropyl polydimethylsiloxane (HO-PDMS) was prepared by hydrosilylation of hydrogen terminated polydimethylsiloxane with allyl alcohol. Polydimethylsiloxane modified urethane with isocyanate group (PSU) was prepared from cyclic trimer of hexamethylenediisocyanate with HO-PDMS. PDMS modified urethane base resin with acrylic group (PSUA) was prepared from the urethane reaction of PSU with isocyanate group and 2-hydroxyethylmethacrylate. Their structures were characterized using FTIR and NMR. Coating materials were prepared by mixing PSUA, acrylic hardner, photo-initiator, and solvent and coated on PET film to obtain flexible and hard coating film by UV irradiation. Transparency of coating film was 89.7%, contact angle, $88^{\circ}$, and pencil hardness, 3H.

Controlled Release Behavior of Bioactive Molecules from Photo-Reactive Hyaluronic Acid-Alginate Scaffolds

  • Nam, Hye-Sung;An, Jeong-Ho;Chung, Dong-June;Kim, Ji-Heung;Chung, Chong-Pyoung
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.530-538
    • /
    • 2006
  • There are three important components in tissue engineering: the cells, signaling factors (cytokines and growth factors), and scaffolds. To obtain finely engineered tissue, all three components should perform their individual functions and be fully integrated with each other. For the past few years, we have studied the characteristics of photodimerizable HA (CHA)/alginate (CA) composite materials. CHA/CA complex hydrogels, which were irradiated under UV light and, then treated with calcium ions, were found to have good biocompatibility, mechanical properties and water resistance for implantable tissue scaffolds. In this study, we introduced a cell growth factor (basic fibroblast growth factor; bFGF) into the CHA/CA scaffolds and studied its release behavior. We also introduced tetracycline hydrochloride and flurbiprofen into the same scaffolds as model activation factors and evaluated their release behaviors from the scaffolds. The drug release rate from the materials was influenced by various parameters, such as the degree of crosslinking, the cross linker type, the physico-chemical properties of the drug, and the amount of the drug in the polymer. The results indicated that the negatively charged CHA/CA composite materials showed sustained release behavior and that HA has a particularly strong negative charge, making it attractive toward tetracycline hydrochloride and bFGF, but repulsive toward flurbiprofen.

Study on Thermal Conductive PV(PhotoVoltaic) Backsheet using MgO Masterbatch with High Thermal Conductivity (고열전도도 MgO를 이용한 열전도성 PV(PhotoVoltaic) 백시트의 연구)

  • Kim, Chang-Hee;Jang, Hyun-Tae;Park, Jong-Se;Yoon, Jong-Kuk;Noh, Eun-Seob;Park, Ji-Soo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.448-453
    • /
    • 2018
  • PV module protective film plays an important role in protecting the solar cell from external environment by anti-hydrolysis polyester, UV resistance and mechanical properties. The backsheet was manufactured by using Roll-to-Roll dry laminating process. The backsheet structure is composed of 3 layers, which are PE, PET, and Fluorine polymer films. In this study, we have experimented the variation of thermal conductivities depending on MgO inputs 10% to 25% in order to confirm the dependence of the module efficiencies. High thermal conductive backsheet can increase the module output power efficiency because the heat is dissipated by spreading out the internal heat. Long-term environment weatherability tests were conducted for confirming 25 year reliability in the field such as PCT, UV, and power efficiency degradations. As the evaluation result, high thermal conductivity can be effective for increase of power efficiency of solar panel by using thermal conductive MgO masterbatch.

Synthesis of UV-Curable Modified (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate Acrylate (자외선 경화형 변성 (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate 아크릴레이트의 합성)

  • Lee, Jongmin;Yi, Hwanpyo;Lee, Sanggun;Park, Hyungnam;Choi, Kangsik;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate acrylate was synthesized by reacting (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate with acrylic acid to minimize hardening shrinkage and to improve heat resistance, which are known as disadvantages of photopolymers for 3D printing application. Urethane acrylate was synthesized by reacting 1,3,5-triazine-2,4,6-triamino alcohol, 2-hexylethyl acrylate, and isophorone diisocyanate in order to improve the mechanical properties without deteriorating the heat resistance. The physical properties before and after the synthesis of the acrylate and the mechanical properties when the urethane acrylate was applied were investigated. The reaction progress of the composite was examined by FTIR and $^{13}C$ NMR. The heat deflection temperature, flexural strength, and surface hardness of the molding were measured. The curing behavior by Photo-DSC ultraviolet irradiation was also examined.