• Title/Summary/Keyword: photo-polymer

Search Result 306, Processing Time 0.024 seconds

Preparation of UV Curable Gel Polymer Electrolytes and Their Electrochemical Properties

  • Oh, Boo-Keun;Jung, Won-Il;Kim, Dong-Won;Rhee, Hee-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.683-687
    • /
    • 2002
  • We have investigated the effect of the number of ethylene oxide (EO) units inside poly(ethylene glycol)dimethacrylate (PEGDMA) on the ionic conductivity of its gelled polymer electrolyte, whose content ranges from 50 to 80 wt%. PEGDMA gelled polym er electrolytes, a crosslinked structure, were prepared using simple photo-induced radical polymerization by ultraviolet light. The effect of the number of EO on the ionic conductivity was clearly shown in samples of lower liquid electrolyte content. We have concluded that the ionic conductivity increased in proportion to both the number of EO units and the plasticizer content. We have also studied the electrochemical properties of 13PEGDMA (number of EO units is 13) gelled polymer electrolyte.

Development of Transparent Conductive Patterned Film with Hybrid Ag Ink

  • Choe, Ju-Hwan;Baek, Su-Jin;Lee, Beom-Ju;Sin, Jin-Guk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.2.3-2.3
    • /
    • 2011
  • With increased interest in printed devices, various metal nano inks have been investigated as candidates materials for printed electrodes and wiring as well as conductive film substituting photo-lithography process. Recent advances in organic conductive polymer allow us to fabricate high performance printed device. Meanwhile, there was several attempts to fabricate conductive films by mixing conductive polymer with metal nano-particle or nano-wires. The presence of Ag nanowires in conductive polymer mixture have shown good potential in organic photovoltaic devices.

  • PDF

A photoswitch from conjugative aromatic polymers

  • Kwon, Tae-Chang;Kim, Yong-Jung;Kim, Yu-Na;Lee, Hyo-Jin;Rameshbabu Krishnamurthy;Sarwade Bhimrao D.;Kim, Eun-Kyoung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.174-174
    • /
    • 2006
  • By condensing two different functional monomers, highly fluorescent aromatic polymers were prepared to produce a conjugated- conjugated spacer-type copolymer or conjugated-non-conjugated spacer-type copolymer. As synthesized polymers were soluble in an organic solvent and showed significantly enhanced optical properties compared to its monomer. Variation in the monomer composition afforded polymers having multifunctionaility such as photochromic-fluorescent polymers. Transparent thin films of the polymer as a solid medium were prepared using spin coating method and fabricated as a photoswitch, which showed photo-induced conductivity switching properties depending on the core monomeric unit in the polymers.

  • PDF

Realization of flexible polymer solar cell by annealing-free process using 1,8-Diiodooctane as additive

  • Kim, Youn-Su;Ju, Byeong-Kwon;Kim, Kyung-Kon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.383-383
    • /
    • 2011
  • We fabricated thermal annealing-free polymer solar cells (PSC) by processing with additive and applied to flexible substrates. The 1, 8-Diiodooctane of 3 vol% blended with active solution resulted in enhancement of $J_{SC}$ due to increase of light absorption and hole mobility as improving the crystallinity of P3HT. In addition, the $V_{OC}$ of PSCs with additive was improved by inserting $TiO_2$ layer without any treatment. The $TiO_2$ layer prevented the direct contact between active layer and Al electrode and reduced the charge recombination near Active/Al interface. It was confirmed by calculation of J0 and photo-voltage transient measurement. The power conversion efficiencies of annealing-free PSCs using additive for ITO glass and flexible (ITO PEN) substrate were obtained 3.03% and 2.45%, respectively.

  • PDF

Liquid crystal alignment and pretilt angle generation using oblique UV light irradiation on polymer surface (경사진 자외선조사를 이용한 셀의 프리틸트각의 입사각도 의존성)

  • 서대식;한정민;박두석;박태규;황율연
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.267-270
    • /
    • 1998
  • In this study, we investigated the generation of pretilt angle for nematic liquid crystal (NLC) in a cell with oblique non-polarized ultraviolet (UV) light irradiation on polyimide (PI) surfaces. It was found that the monodomain alignment of the NLC is obtained in a cell with an angle of incidence of 70∼85$^{\circ}$on PI surface. We consider that the monodomain alignment of NLC is attributed to anisotropic dispersion force effect due to Photo-depolymerization of polymer on PI surfaces. Also, pretilt angle of NLC is generated about 3$^{\circ}$ with an angle of incidence of 70∼75$^{\circ}$. It is considered that the pretilt angle generation in NLC is attributed to interaction between the LC molecules and the polymer surfaces.

  • PDF

Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors (히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구)

  • Nam, Hye-Sung;Kim, Ji-Heng;An, Jeong-Ho;Chung, Dong-June
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.476-485
    • /
    • 2001
  • In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.

  • PDF

Development of Polymer Coating Method for Stable Stent Coating Using Chemical Bond Between Metal Surface and Polymer (안정된 스텐트 코팅막을 형성하기 위해 금속표면과 고분자 사이의 화학적 결합을 이용한 고분자 코팅법 개발)

  • Nam, Dae-Sik;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • To produce stable polymer coating layer using the interaction between metal stent and polymer layer, Ahx-HSAB was synthesized by coupling 6-aminoheanoic acid (Ahx) with N-Hydroxy succinimidyl 4-azidobenzonate (HSAB) containing photo reactive group. Then, Ahx-HSAB was applied to self·assembled monolayer (SAM) on $TiO_2$-coated surface, since one end of Ahx-HSAB was carboxyl acid which was known to be able to interact with $TiO_2$ surface. That SAM layer was incubated in 1% polycaprolacton (PCL) solution and photoreacted by ultraviolet light (254 nm) to produce the chemical bond between SAM and polymer layer, followed by PCL polymer coating ({\sim}5\;{\mu}m$) by the method of spray coating. The surface change was investigated by measuring of contact angle of the surface. The contact angle values of stainless steel (SS) surface, $TiO_2$-coated surface, SAM layer by Ahx-HSAB, photoreacted surface with PCL and PCL layer by spray coating were 70.48${\pm}$1.89, 38.57${\pm}$3.31, 60.14${\pm}$2.21, 54.91${\pm}$2.70 and 56.47${\pm}$2.12, respectively. The stability of polymer layers was tested by incubation of PCL-coated plates in 0.1M PBS buffer (pH 7.4, 0.05%, Tween 80) with vigorous shaking (200 rpm). While the poiymer layer prepared by these processes showed the intact surface morphology over 3 days, the polymer layers prepared by spray coating of PCL onto SS plate (control 1) and $TiO_2$-coated SS plate (control 2) were Peeled off in 3 days. Thus, the polymer coating method using SAM and photoreaction seems to be a effective method to obtain the stable polymer layer onto SS surface.

Refractive Index Changes of Polymer Film by Photochemical Reactions (광반응에 의한 고분자 필름의 굴절률 변화)

  • 조정환;신미영;이종하;김성수;송기국
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.545-550
    • /
    • 2004
  • The refractive index of thin copolymer film was controlled by photo-degradation of chromophores in the copolymer. FTIR and UV/Vis spectroscopy were employed to elucidate the effect of chemical structure on refractive index changes after photobleaching. The decrease of refractive index of the film by photobleaching can be ascribed to the decrease of polarizability of polymer molecules through breakage of C =C bond in the chromophore. Due to the selective photoreaction of the chromophores which align along the film plane, refractive index of the copolymer film measured in TE mode decreases faster than that in TM mode. Polarized ATR-FTIR spectroscopy was used to verify such a difference in refractive index of the film.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

A Facile Method for Micropatterning of Gold Nanoparticles Immobilized on UV Cross-linked Polymer Thin Films

  • Kim, Min-Sung;Jeong, Yeon-Tae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.85-88
    • /
    • 2009
  • This report demonstrates the immobilization of uniformly sized gold nanoparticles (AuNPs) on UV cross-linked poly(4-vinylpyridine) (P4VP) polymer thin films and the preparation of micropatterned structures of AuNPs on these films. The polymer thin films were prepared by a spin-coating of P4VP onto a cleaned silicon wafer surface. Upon UV irradiation, these films were then photo cross-linked. Gold nanoparticles were immobilized by immersing the polymer surface in a colloidal solution of gold nanoparticles stabilized by citric acid. The morphology of the films and the immobilization of AuNPs were studied by atomic force microscopy (AFM) and UV-visible spectroscopic techniques. The micropatterned gold structures that were produced on the polymer surface are delineated by combining with the photolithographic method. While untreated and simply spin coated films were physisorbed and unstable that could be easily removed by rinsing with a solvent, the cross-linked and AuNPs immobilized P4VP films were found to be highly stable even after repeated solvent extractions.