• Title/Summary/Keyword: photo-degradation

Search Result 193, Processing Time 0.059 seconds

Photocatalytic Degradation of Acetaldehyde and MEK using Batch Type Photo-Reactor (회분식 광촉매반응기를 이용한 아세트알데하이드와 MEK 제거특성 연구)

  • Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1527-1532
    • /
    • 2013
  • The kinetics of photocatalytic degradation of gaseous acetaldehyde and methylethylketone(MEK) were studied by the batch scale of photo-reactor. Variable parameters were initial concentration of acetaldehyde and MEK, water vapor content, and temperature. The photocatalytic degradation rate was increased with increasing concentration of acetaldehyde and MEK, but maintained gentle increase beyond a certain concentration. The Langmuir-Hinselwood model was successfully applied to correlate experimental data. Water vapor inhibited the degradation reaction of acetaldehyde and MEK. The optimum reaction temperature was $45^{\circ}C$ for acetaldehyde and MEK.

Photo-Degradation Behavior of Silk Fabrics (견직물의 광열화 거동)

  • Lee, Hack-Jung;Kwon, Young-Suk;Jang, Jeong-Dae;Lee, Sang-Joon;Cho, Hyun-Hok
    • Textile Coloration and Finishing
    • /
    • v.18 no.6 s.91
    • /
    • pp.37-42
    • /
    • 2006
  • Researches to preserve and restore the remaining fabrics as costume heritages have been carried out. In this study, in order to artificially restore an excavated silk fabrics, degummed silk fabrics and safflower dyed silk fabrics were prepared for an experiment. These fabrics were photo-degraded by the Xenon arc beam to have various strength retention(100%, 80%, 60%, 40%, 20%). The fine structure and physical properties of Xenon arc treated fabrics were investigated with various techniques such as tensile test, weight loss, wide-angle X-ray diffraction, yellowness, color, SEM etc. Tensile strength and the crystal diffraction intensity of silk fabrics decreased as Xenon arc hem treatment time increased. Weight loss increased slightly. Strength retention was decreased as the Xenon arc beam treatment time goes by. (Yellowness of the undyed silk fabrics and $L^*$ of the dyed silk fabrics increased. Whiteness of the undyed silk fabrics and $b^* of the dyed silk fabrics decreased.) SEM results of the silk fabrics treated Xenon arc beam show that surface was a little damaged.

Ellipso-Microscopic Observation of Titanium Surface under UV-Light Irradiation

  • Fushimi, K.;Kurauchi, K.;Nakanishi, T.;Hasegawa, Y.;Ueda, M.;Ohtsuka, T.
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.265-270
    • /
    • 2016
  • The ellipso-microscopic observation of a titanium surface undergoing anodization in $0.05mol\;dm^{-3}$ of $H_2SO_4$ was conducted. During irradiation by ultra-violet (UV) light with a wavelength of 325 nm, the titanium surface allowed for the flow of a photo-induced current and showed up as a bright, patch-like image on an ellipso-microscopic view. The brightness and patch-pattern in the image changed with flowing photo-induced current. The changes in the brightness and the image corresponded to the formation and/or degradation of titanium oxide due to the photo-electrochemical reaction of the oxide. An in situ monitoring using the ellipso-microscope revealed that the film change was dependent on the irradiation light power, by UV-light increases the anodic current and results in the initiation of pitting at lower potentials as compared with the non-irradiated condition.

Comparison of physical properties and dye photo-degradation effects for $carbon/TiO_2$ complexes

  • Oh, Won-Chun;Lim, Chang-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.196-203
    • /
    • 2007
  • We have studied a method for the preparation of hybrid $carbon/TiO_2$ complexes involving pitch coating, pitch binding and the penetration of titanium n-butoxide(TNB) solution with porous carbon. The photocatalysts were investigated with surface textural properties and SEM morphology, structural crystallinity and elemental identification between porous carbon and $TiO_2$, and dye decomposition performance. For the all $carbon/TiO_2$ complexes prepared by some kinds of different methods, the excellent photocatalytic effect for dye degradation should be attributed to the both effects between photo-decomposition of the supported $TiO_2$ and adsorptivity of the porous carbons.

Photo and Electrocatalytic Treatment of Textile Wastewater and Its Comparison

  • Singaravadivel, C.;Vanitha, M.;Balasubramanian, N.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.44-49
    • /
    • 2012
  • Electrochemical and photochemical techniques have been proved to be effective for the removal of organic pollutants in textile wastewater. The present study deals with degradation of synthetic textile effluents containing reactive dyes and assisting chemicals, using electro oxidation and photo catalytic treatment. The influence of various operating parameters such as dye concentration, current density, supporting electrolyte concentration and lamp intensity on TOC removal has been determined. From the present investigation it has been observed that nearly 70% of TOC removal has been recorded for electrooxidation treatment with current density 5 mA/$dm^2$, supporting electrolyte concentration of 3 g/L and in photocatalytic treatment with 250 V as optimum lamp intensity nearly 67% of TOC removal was observed. The result indicates that electro oxidation treatment is more efficient than photocatalytic treatment for dye degradation.

Fundamental Study on the Photocatalytic Degradation of Organics in Industrial Waste Water with the Presence of Titanium Dioxide

  • Kusaka, Eishi;Izawa, Mihiro;Fukunaka, Yasuhiro;Ishii, Ryuji
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.286-291
    • /
    • 2001
  • As part of fundamental studies on the degradation of the organic compounds in industrial waste water, the photocatalytic degradation properties of the organic compound by means of the UV/TiO$_2$degradation process have been investigated. The test organic compound of acetic acid was chosen in this study. The testing of photo catalytic degradation were performed under various operation conditions such as TiO$_2$dosages, initial concentration of the organic, the aqueous pH's, etc. The effects of various parameters on the short time activity of the present acetic acid-UV/TiO$_2$system could be demonstrated from this investigation.

  • PDF

Optical issues of OLED displays with a photo sensor for in-pixel optical feedback

  • Oepts, Wouter;Giraldo, Andrea;Lifka, Herbert;Fish, David;Young, Nigel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.968-971
    • /
    • 2005
  • Amorphous silicon photo diodes incorporated in a polyLED stack are applied in in pixel opticalfeedback to compensate for polyLED degradation. Large quantum efficiencies and perfect linearity are demonstrated. The photosensitivity is in agreement with optical modeling of the stack. A new scheme for ambient and cross talk light cancellation is given.

  • PDF

pH Dependence on the Degradation of Rhodamine B by Fe-ACF/$TiO_2$ Composites and Effect of Different Fe Precursors (Fe-ACF/$TiO_2$ 복합체에 의한 로다민 B 용액의 분해에 있어서 pH 의존성 및 여러 가지 Fe 전구체의 효과)

  • Zhang, Kan;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.408-415
    • /
    • 2009
  • Iron-loaded activated carbon fibers (Fe-ACF) supported titanium dioxide ($TiO_2$) photocatalyst (Fe-ACF/$TiO_2$) was synthesized using a sol-gel method. Three different types of Fe-ACF/$TiO_2$ were obtained by treatment with different precursor of Fe, and characterized using BET, SEM, XRD and EDX analysis. The photocatalytic activity of Fe-ACF/$TiO_2$ was investigated by the degradation of Rhodamine B (Rh.B) solution under UV irradiation. From the experimental results, it was revealed that Fe-ACF/$TiO_2$ composites show considerable photocatalytic ability for the removal of Rh.B by comparing non-treated ACF/$TiO_2$ composites. And photo-Fenton reaction with Fe element was incoordinately influenced due to different precursor of Fe. It clearly indicates that Fe-ACF/$TiO_2$ composites prepared using $FeCl_3$ provided the highest photo-Fenton activity, then, which was affected by pH changes on the degradation of Rh.B.

Photocatalytic Degradation of 3-Nitrophenol with ZnO Nanoparticles under UV Irradiation

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.131-135
    • /
    • 2017
  • Zinc nitrate hexahydrate [$Zn(NO_3){\cdot}6H_2O$] and sodium hydroxide [NaOH] were used as source reagents in the preparation of ZnO nanoparticles in an aqueous solution containing deionized water and ethanol in a ratio of 2:5 (v/v). ZnO nanoparticles were heated in an electric furnace at $700^{\circ}C$ for 2 h under an atmosphere of inert argon gas. The morphological and structural properties of the nanoparticles were characterized by scanning electron microscopy (SEM) and powder X-ray diffractometry (XRD). UV-vis spectrophotometry was used to analyze the photocatalytic degradation of 3-nitrophenol with ZnO nanoparticles as photocatalyst under ultraviolet irradiation at 254 nm. Evaluation of the kinetic of the photo-catalytic degradation of 3-nitrophenol indicated that the degradation of 3-nitrophenol with ZnO nanoparticles obeyed the pseudo-first order reaction rate model.

Applications of a Hybrid System Coupled with Ultraviolet and Biofiltration for the Treatment of VOCs (휘발성유기화합물 처리를 위한 고도산화법과 고분자 담체 바이오필터 결합시스템의 적용)

  • Shin, Shoung Kyu;Song, Ji Hyeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.441-447
    • /
    • 2008
  • Volatile organic compounds (VOCs) emitted from various industrial sources commonly consist of biodegradable chemicals and recalcitrant compounds. Therefore, it is not effective to employ a single method to treat such mixtures. In this study, a novel hybrid system coupled with a ultraviolet (UV) photolysis reactor and a biofilter in a series was developed and evaluated using toluene and TCE as model VOCs. When only TCE was applied to the UV reactor, greater than 99% of TCE was degraded and the concentration of soluble byproducts from photo-oxidation reaction increased significantly. However, the toluene and TCE mixture was not effectively degraded by the UV photo-oxidation standalone process. The hybrid system showed high toluene removal efficiencies, and TCE degradation at a low toluene/TCE ratio was improved by UV pretreatment. These findings indicated that the UV photo-oxidation were effective for TCE degradation when the concentration of toluene in the mixture was relatively low. A restively high toluene content in the mixture resulted in an inhibition of TCE degradation. Thus, chemical interactions in both photo-oxidation and biodegradation need to be carefully considered to enhance overall performance of the hybrid system.