• Title/Summary/Keyword: phosphor in glass

Search Result 70, Processing Time 0.023 seconds

Optimization of Phosphor Contents and Heat-treatment Temperature in White LED Package with Glass Remote Phosphor Structure (Glass Remote Phosphor 구조를 갖는 백색 LED 패키지의 형광체 함량과 열처리 온도 최적화)

  • Jeong, Hee-Suk;Hong, Seok-Gi;Ryeom, Jeongduk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.30-38
    • /
    • 2016
  • In this research, a 6W white LED package with a Glass Remote Phosphor was developed to improve the life of an LED package. The Glass Remote Phosphor was fabricated by the Phosphor in Glass (PiG) method, wherein phosphor YAG:Ce was mixed with glass frit and then heat treated. A paste with 75wt.% of a phosphor substance and 25wt.% glass frit was coated on a glass substrate two times using the screen-printing technique and heat-treated at $800^{\circ}C$ ; this structure gave a luminous efficacy of 136.1lm/W, color rendering index of 74Ra, and color temperature of 5,342K, thus satisfying the requirements as a light source for lighting. Moreover, an IES LM-80 accelerated life test was conducted on the same LED package for 6,000h in order to estimate the L70 lifetime based on IES TM-21. The results showed guaranteed lifetimes of 213,000h at $55^{\circ}C$, 245,000h at $85^{\circ}C$, and 209,000h at $95^{\circ}C$.

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

Optical Properties of Color Conversion Lens for White LED Using B2O3-Bi2O3-ZnO Glass (B2O3-Bi2O3-ZnO계 유리를 이용한 백색 LED용 색변환 렌즈의 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deuk-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.614-619
    • /
    • 2013
  • Recently, remote phosphor is reported for white LED enhancing of phosphor efficiency compared with conventional phosphor-based W-LED. In this study, Remote phosphor was produced by screen printing coating on glass substrate with phosphor contents rated paste and heat treatment. The paste consists of phosphor, lowest softening glass frit and organic binders. Remote phosphor can be well controlled by varying the phosphor content rated paste. After mounting remote phosphor on top of blue LED chip, CCT, CRI, and luminance efficiency were measured. The measurement results showed that CCT, CRI, and luminance efficiency were 6,645, 68, and 1,16l m/W in phosphor 80 wt.% remote phosphor sintered at $600^{\circ}C$.

Luminescence property of Eu2+ in SiO2-Al2O3 glass phosphor

  • Chae, Ki Woong;Lee, Kyoung-Ho;Cheon, Chae Il;Cho, Nam In;Kim, Jeong Seog
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.189-192
    • /
    • 2012
  • Manufacturing process for silicate glass phosphors containing Eu2+ activator and their photoluminescence property have been studied. We adopted powder sintering process instead of traditional glass melting process for making glass phosphor. At first, phosphor powders were synthesized at 1200 ℃ for 2-3 hours under a reducing atmosphere with 10% H2-90% N2 gas mixture. The reduced powders were compacted into discs and then the discs weresintered at 1400 ~ 1500 ℃ for 1 hr under a reducing atmosphere of 5H2-95% N2. The enhancement of PL intensity by Al2O3 addition, XPS binding energy shift of Si 2p and O 1s, sintering shrinkage, and crystallization were characterized.

Development of Red CaAlSiN3:Eu2+ Phosphor in Glass Ceramic Composite for Automobile LED with High Temperature Stability (고온 안정성이 우수한 자동차 LED용 Red CaAlSiN3:Eu2+ 형광체/Glass 세라믹 복합체 개발)

  • Yoon, Chang-Bun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.324-329
    • /
    • 2018
  • Red phosphor in glasses (PiGs) for automotive light-emitting diode (LED) applications were fabricated with 620-nm $CaAlSiN_3:Eu^{2+}$ phosphor and Pb-free silicate glass. PiGs were synthesized and mounted on high-power blue LED to make a monochromatic red LED. PiGs were simple mixtures of red phosphor and transparent glass powder. After being fabricated with uniaxial press and CIP at 300 MPa for 20 min, the green bodies were thermally treated at $550^{\circ}C$ for 30 min to produce high dense PiGs. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30% phosphor had a full sintered density. Changes in photoluminescence spectra and color coordination were studied by varying the thickness of plates that were mounted after optical polishing. As a result of the optical spectrum and color coordinates, PiG plate with $210{\mu}m$ thickness showed a color purity of 99.7%. In order to evaluate the thermal stability, the thermal quenching characteristics were measured at temperatures of $30{\sim}150^{\circ}C$. The results showed that the red PIG plates were 30% more thermally stable compared to the AlGaInP red chip.

Effects of Sputtering Conditions on Properties of $CaTiO_3 : Pr$ Phosphor thin Films (Sputtering 조건이 $CaTiO_3 : Pr$ 형광체 박막의 물성에 미치는 영향)

  • 정승묵;김영진;강승구;이기강
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.167-172
    • /
    • 2000
  • CaTiO₃:Pr phosphor thin films were prepared on Si(100), ZnO/glass, Corning glass and ITO/glass by rf magnetron reactive sputtering. The effects of deposition parameters such as oxygen partial pressure, substrate temperature, and annealing conditions on crystallinity and compositional variation of the films were investigated. PL spectra of CaTiO₃:Pr phosphor thin films exhibited red regime peaking at 613 nm and enhanced PL intensity was observed for the film annealed in vacuum atmosphere as compared to the deposit annealed in N₂ environment.

  • PDF

Optical Properties as Process Condition of Color Conversion Lens Using Low-softening Point Glass for White LED (백색 LED용 저 연화점 유리를 이용한 색 변환 렌즈의 제조 조건에 따른 광 특성)

  • Chae, Yoo-Jin;Lee, Mi-Jai;Hwang, Jong-Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeong, Hee-Suk;Lee, Young-Sik;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Recently, remote phosphors have been reported for application to white LEDs to provide enhanced phosphor efficiency compared with conventional phosphor-based white LEDs. In this study, a remote phosphor was produced by coating via screen printing on a glass substrate with different numbers of phosphor coating. The paste consists of phosphor, lowest softening glass frits, and organic binders. The remote phosphor could be well controlled by varying the phosphor content rated paste. After mounting the remote phosphor on top of a blue LED chip, CCT, CRI, and luminance efficiency were measured and values of 5300 K, 62, and 117 lm/W were respectively obtained in the 80 wt% phosphor with 3 coating layers sintered at $800^{\circ}C$.

Monochromatic Amber Light Emitting Diode with YAG and CaAlSiN3 Phosphor in Glass for Automotive Applications

  • Lee, Jeong Woo;Cha, Jae Min;Kim, Jinmo;Lee, Hee Chul;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Monochromatic amber phosphor in glasses (PiGs) for automotive LED applications were fabricated with $YAG:Ce^{3+}$, $CaAlSiN_3:Eu^{2+}$ phosphors and Pb-free silicate glass. After synthesis and thickness-thinning process, PiGs were mounted on high-power blue LED to make monochromatic amber LEDs. PiGs were simple mixtures of 566 nm yellow YAG, 615 nm red $CaAlSiN_3:Eu^{2+}$ phosphor and transparent glass frit. The powders were uniaxially pressed and treated again through CIP (cold isostatic pressing) at 200 MPa for 20 min to increase packing density. After conventional thermal treatment at $550^{\circ}C$ for 30 min, PiGs were applied by using GPS (gas pressure sintering) to obtain a fully dense PiG plate. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30 wt% phosphor had full sintered density. Changes in photoluminescence spectra and color coordination were investigated by varying the ratio of $YAG/CaAlSiN_3$ and the thickness of the plates. Considering the optical spectrum and color coordinates, PiG plates with $240{\mu}m$ thickness showed a color purity of 98% and a wavelength of about 605 nm. Plates exhibit suitable optical characteristics as amber light-converting material for automotive LED applications.

Effect of Glass Composition on the Optical Properties of Color Conversion Glasses for White LED (유리조성에 따른 백색 LED용 색변환 유리의 광특성)

  • Huh, Cheolmin;Hwang, Jonghee;Lim, Tae-Young;Kim, Jin-Ho;Lee, MiJai;Yoo, Jong-Sung;Park, Tae-Ho;Moon, Jooho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.669-674
    • /
    • 2012
  • Yellow phosphor dispersed color conversion glasses are promising phosphor materials for white LED applications because of their good thermal durability, chemical stability, and anti-ultraviolet property. Six color conversion glasses were prepared with high Tg and low Tg specimens of glass. Luminous efficacy, luminance, CIE (Commission Internationale de l'Eclairage) chromaticity, CCT (Correlated Color Temperature), and CRI (Color Rendering Index) of the color conversion glasses were analyzed according to the PL spectrum. Color conversion glasses with high Tg glass frit, sintered at higher temperature, showed better luminous properties than did color conversion glasses with low Tg glass frit. The characteristics of the color conversion glass depended on the glass composition rather than on the sintering temperature. The XRD peaks of the YAG phosphor disappeared in the color conversion glass with major components of $B_2O_3$-ZnO-$SiO_2$-CaO and, in the XRD results, new crystalline peaks of $BaSi_2O_5$ appeared in the color conversion glass with major components of $Bi_2O_3$-ZnO-$B_2O_3$-MgO. The characteristics of CIE chromaticity, CCT, and the CRI of low Tg color conversion glasses showed worse color properties than those of high Tg color conversion glasses. However, these color characteristics of low Tg glasses were improved by thickness variation. So color conversion glasses with good characteristics of both luminous and color properties were attained.

Luminescent Properties of BaSi2O5:Eu2+ Phosphor Film Fabricated by Spin-Coating of Ba-Eu Precursor on SiO2 Glass

  • Park, Je Hong;Kim, Jong Su;Kim, Jong Tae
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • Well-crystallized $BaSi_2O_5:Eu^{2+}$ phosphor films were synthesized by heat treatment of spin-coated BaO:Eu on $SiO_2$ glass. We investigated luminescence-structure properties of these phosphor films as a function of heat-treatment temperature. From x-ray diffraction patterns, our $BaSi_2O_5:Eu^{2+}$ phosphor films revealed that (111)- and (204)-crystal planes of $BaSi_2O_5$ crystal were dominantly increased with an increase of heat-treatment temperature. Photoluminescence intensities of $BaSi_2O_5:Eu^{2+}$ phosphor films were increased with amount of these crystal planes. It can be explained that $Eu^{2+}$ ions were stably occupied at specific crystal orientation of $BaSi_2O_5$ crystal, enhancing the luminescent intensities of $BaSi_2O_5:Eu^{2+}$ phosphor films. In addition, our $BaSi_2O_5:Eu^{2+}$ phosphor films had transmittance of 70% at 510 nm,.due to the dense morphology and specific crystallinity of $BaSi_2O_5:Eu^{2+}$ phosphor films.