• Title/Summary/Keyword: phospholipids

Search Result 470, Processing Time 0.045 seconds

Lysophosphatidic Acid and Lysophosphatidylserine, New Bioactive Lysophospholipids

  • Arai, Hiroyuki
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.109-110
    • /
    • 2003
  • Phospholipids function as major components of biological membranes as well as precursors of biologically active lipid messengers. It is well known that arachidonic acid attached at the sn-2 position of phosphoglycerides serves as a precursor of prostaglandins and leukotrienes. Recently, it has been recognized that lysophospholipids such as lysophosphatidic acid, sphingosine 1-phosphate, lysophosphatidylserine and monoglyceride also function as lipid messengers with a variety of biological activities. (omitted)

  • PDF

Biochemistry and structure of phosphoinositide phosphatases

  • Kim, Young Jun;Jahan, Nusrat;Bahk, Young Yil
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Phosphoinositides are the phosphorylated derivatives of phosphatidylinositol, and play a very significant role in a diverse range of signaling processes in eukaryotic cells. A number of phosphoinositide-metabolizing enzymes, including phosphoinositide-kinases and phosphatases are involved in the synthesis and degradation of these phospholipids. Recently, the function of various phosphatases in the phosphatidylinositol signaling pathway has been of great interest. In the present review we summarize the structural insights and biochemistry of various phosphatases in regulating phosphoinositide metabolism.

Bacillus cereus에 의한 Phospholipase C (PLC) 생산

  • Seo, Guk-Hwa;Lee, Jong-Il;Bornscheuer, Uwe T.
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.232-234
    • /
    • 2002
  • Bacillus cereus secretes a nonspecific phospholipase C (PLC) that catalyzes the hydrolysis of phospholipids to yield diacylglycerol and a phosphate monoester. This study focuses on the production of PLC by B. cereus and recombinant E. coli with fusion protein gene (plc::gfp). Fermentation processes have been monitored by a 2-dimensional fluorescence sensor.

  • PDF

Graphene Derivatives for Bioanalytical Chemistry

  • Min, Dal-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.10-10
    • /
    • 2011
  • Graphene and graphene derivatives have attracted enormous attention from various research fields for applications in electronic devices, transparent electrodes, biosensors, drug delivery system and surface coatings. In the viewpoint of chemist, the chemical structure of graphene derivatives seems intriguing but detailed structures are being revealed only recently while engineering approaches for various applications are being executed very actively. Recently, several reports are available on interactions of graphene with biomolecules including proteins and nucleic acids. In this talk, I'll introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids.

  • PDF

Effect of Substrate Micellization on the Hydrolysis Rate of Phospholipid by Phospholipase $A_2$ (Phospholipase $A_2$에 의한 인지질의 가수분해반응에서 기질의 미셀화가 반응속도에 미치는 영향)

  • 김형주;신우진;최태부
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.2
    • /
    • pp.163-170
    • /
    • 1993
  • The effect of substrate micellization on the hydrolysis rate in the production of lysopho-sphatidylcholine (LPC) from phosphatidylcholine (PC) using hog pancreas phospholipase A2(PLA2) was studied. The optimal temperature and pH for the reactions in aqueous phase was found 42C and 7.2, respectively. For a given PC concentration, initial reaction rate was progressively increased with the addition of sodium deoxycholate (DOC), which could transform the bilayer of phospholipids into micellar structure.

  • PDF

Oxidation of Ferrocytochrome c by Membrane-Associated Ferricytochrome c

  • Kim, Yu-Shin;Sanghwa Han
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.46-46
    • /
    • 1999
  • Positively charged cytochrome c interacts with the negatively charged mitochondrial inner membrane. This interaction induces conformational changes in bound cytochrome c. In order to estimate the effect of cytochrome c-membrane interaction on the mitochondrial electron transfer, we have investigated oxidation of ferrocytochrom c in the presence of anionic phospholipids.(omitted)

  • PDF

DIVERGENT ROLES OF A NOVEL PHOSPHOLIPASE $A_2$ IN CELL DEATH

  • Schnellmann, Rick G.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.68-88
    • /
    • 2002
  • Phospholipase A$_2$ (s) are esterases that hydrolyze the sn-2 ester bond in phospholipids, releasing a fatty acid and a lysophospholipid. We previously showed that most PLA$_2$ activity in rabbit renal proximal tubule cells (RPTC) was Ca$\^$2+/-independent, localized to the endoplasmic reticulum (ER-iPLA$_2$), and inhibited by the specific Ca$\^$2+/-independent PLA$_2$ inhibitor bromoenol lactone (BEL).(omitted)

  • PDF

Effect of Carbon Sources on the Synthesis of Phospholipid and Fatty Acid Composition in Chloroplast of Chlorella ellipsoidea (Chlorella ellipsoidea 엽록체의 인지질 생합성 및 지방산 조성에 미치는 탄소원의 효과)

  • 정효선
    • Journal of Plant Biology
    • /
    • v.33 no.1
    • /
    • pp.49-54
    • /
    • 1990
  • Chlorella cells were cultured with M4N media treated with glucose (5 mM) sucrose (10 mM) and raffinose (30 mM). Phospholipids and their fatty acid compositions were analyzed in the chloroplast isolated from cultured Chlorella cells. Growth rate was prominently raised in the treatment with raffinose. Glucose was the most excellent carbon source in the biosynthesis of total lipid, phosphatidylcholine(PC), phosphatidylethanolamine(PE), phosphatidylinositol(PI) of the chloroplast. Also, the major fatty acids were palmitic, linoleic and linolenic acid during the biosynthesis of phospholipid in the control and in the treatment with carbon sources.

  • PDF

Lipids and Fatty Acid Composition of Barley Grain (보리의 지방질 성분에 관한 연구)

  • Shin, Hyo-Sun;Gray, J. Ian
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.195-201
    • /
    • 1983
  • Lipids isolated from three barley samples were identified and quantitated by column, thin layer and gas liquid chromatographic techniques. These lipids were shown to consist of 69.3-73.1% neutral lipids, 9.6-16.5% glycolipids, and 14.2-17.9% phospholipids. Among the neutral lipids, triglycerides were predominant (54.2 to 55.7%) with smaller amounts of 1,2-diglycerides, 1,3-diglycerides, free sterols, free fatty acids, steryl esters, and three unknown being present. Among the glycolipids, digalactosyl diglycerides (31.3 to 33.2%) and monogalactosyl diglycerides (26.2 to 29.6%) were the most abundant. Esterified steryl glycosides, steryl glycosides, cerebrosides, sulfolipids, and an unknown component were present as minor components. Of the phosopholipids, phosphatidyl cholines and serines, lysophosphatidyl cholines, and phosphatidyl ethanolamines were the major components, comprising over 80% of this class. The major fatty acids in the total and the three lipid classes were palmitic, oleic, linoleic and linolenic acids. However, the neutral lipids fraction contained more oleic acid than other lipid fractions, and the phospholipids fraction contained more palmitic acid than the other lipid fractions.

  • PDF