• Title/Summary/Keyword: phospholipase D

Search Result 141, Processing Time 0.036 seconds

Sound Stress Alters Physiological Processes in Digestion and Immunity and Enhances Insecticide Susceptibility of Spodoptera exigua (스트레스 음파에 따른 파밤나방(Spodoptera exigua ) 소화 및 면역 생리작용 저하와 살충제 감수성 제고 효과)

  • Park, Jung-A;Seok, Jung-Kyun;Prasad, Surakasi Venkara;Kim, Yong-Gun
    • Korean journal of applied entomology
    • /
    • v.50 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • This study analyzed effects of different sound treatments in frequencies and intensities on digestion and immune physiological processes of the beet armyworm, Spodoptera exigua larvae. Without effect on egg hatch, sound treatments with 100-5,000 Hz at 95 dB suppressed feeding behavior and inhibited a digestive enzyme activity. In addition, two dimensional electrophoresis of midgut luminal proteins indicated a marked difference of the sound-treated larvae. In response to 5,000 Hz at 95 dB, larvae showed a significant decrease in hemocyte nodule formation against fungal challenge along with significant suppression in phospholipase $A_2$ activity in hemocyte and plasma. With increase of sound frequencies, the treated larvae showed an enhanced susceptibility to insecticides. Such sound frequency effect was significantly modulated with different sound intensities. These results suggest that sound treatment may give adverse stress to physiological processes of S. exigua larvae and may be applied to a nonchemical insect pest control.

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

Protein Profiles Associated with Anoikis Resistance of Metastatic MDA-MB-231 Breast Cancer Cells

  • Akekawatchai, Chareeporn;Roytrakul, Sittiruk;Kittisenachai, Suthathip;Isarankura-Na-Ayudhya, Patcharee;Jitrapakdee, Sarawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.581-590
    • /
    • 2016
  • Resistance to anoikis, a cell-detachment induced apoptosis, is one of the malignant phenotypes which support tumor metastasis. Molecular mechanisms underlying the establishment of this phenotype require further investigation. This study aimed at exploring protein expression profiles associated with anoikis resistance of a metastatic breast cancer cell. Cell survival of suspension cultures of non-metastatic MCF-7 and metastatic MDA-MB-231 cells were compared with their adherent cultures. Trypan blue exclusion assays demonstrated a significantly higher percentage of viable cells in MDA-MB-231 than MCF-7 cell cultures, consistent with analysis of annexin V-7-AAD stained cells indicating that MDA-MB-231 possess anti-apoptotic ability 1.7 fold higher than MCF-7 cells. GeLC-MS/MS analysis of protein lysates of MDA-MB-231 and MCF-7 cells grown under both culture conditions identified 925 proteins which are differentially expressed, 54 of which were expressed only in suspended and adherent MDA-MB-231 but not in MCF-7 cells. These proteins have been implicated in various cellular processes, including DNA replication and repair, transcription, translation, protein modification, cytoskeleton, transport and cell signaling. Analysis based on the STITCH database predicted the interaction of phospholipases, PLC and PLD, and 14-3-3 beta/alpha, YWHAB, with the intrinsic and extrinsic apoptotic signaling network, suggesting putative roles in controlling anti-anoikis ability. MDA-MB-231 cells grown in the presence of inhibitors of phospholipase C, U73122, and phospholipase D, FIPI, demonstrated reduced ability to survive in suspension culture, indicating functional roles of PLC and PLD in the process of anti-anoikis. Our study identified intracellular mediators potentially associated with establishment of anoikis resistance of metastatic cells. These proteins require further clarification as prognostic and therapeutic targets for advanced breast cancer.

Effects of Histamine on Cultured Interstitial Cells of Cajal in Murine Small Intestine

  • Kim, Byung Joo;Kwon, Young Kyu;Kim, Euiyong;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.149-156
    • /
    • 2013
  • Interstitial cells of Cajal (ICCs) are the pacemaker cells in the gastrointestinal tract, and histamine is known to regulate neuronal activity, control vascular tone, alter endothelial permeability, and modulate gastric acid secretion. However, the action mechanisms of histamine in mouse small intestinal ICCs have not been previously investigated, and thus, in the present study, we investigated the effects of histamine on mouse small intestinal ICCs, and sought to identify the receptors involved. Enzymatic digestions were used to dissociate ICCs from small intestines, and the whole-cell patch-clamp configuration was used to record potentials (in current clamp mode) from cultured ICCs. Histamine was found to depolarize resting membrane potentials concentration dependently, and whereas 2-PEA (a selective H1 receptor agonist) induced membrane depolarizations, Dimaprit (a selective H2-agonist), R-alpha-methylhistamine (R-alpha-MeHa; a selective H3-agonist), and 4-methylhistamine (4-MH; a selective H4-agonist) did not. Pretreatment with $Ca^{2+}$-free solution or thapsigargin (a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum) abolished the generation of pacemaker potentials and suppressed histamine-induced membrane depolarization. Furthermore, treatments with U-73122 (a phospholipase C inhibitor) or 5-fluoro-2-indolyl des-chlorohalopemide (FIPI; a phospholipase D inhibitor) blocked histamine-induced membrane depolarizations in ICCs. On the other hand, KT5720 (a protein kinase A inhibitor) did not block histamine-induced membrane depolarization. These results suggest that histamine modulates pacemaker potentials through H1 receptor-mediated pathways via external $Ca^{2+}$ influx and $Ca^{2+}$ release from internal stores in a PLC and PLD dependent manner.

Inhibitory effect of Chaenomelis Fructus ethanol extract on receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis

  • Park, Geun Ha;Gu, Dong Ryun;Lee, Seoung Hoon
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • The fruit of Chaenomeles sinensis (Thouin) Koehne (Chaenomelis Fructus) known as "Mo-Gua" in Korea has been commonly used in traditional medicine to treat inflammatory diseases, such as sore throat. However, its effect on bone metabolism has not been elucidated yet. Here, we examined the effect of Chaenomelis Fructus ethanol extract (CF-E) on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation and formation. CF-E considerably inhibited osteoclast differentiation and tartrate-resistant acid phosphatase-positive multinuclear cell formation from bone marrow-derived macrophages and osteoclast precursor cells in a dose-dependent manner. In addition, the formation of actin rings and resorption pits were significantly suppressed in CF-E-treated osteoclasts as compared with the findings in non-treated control cells. Consistent with these phenotypic inhibitory results, the expressions of osteoclast differentiation marker genes (Acp5, Atp6v0d2, Oscar, CtsK, and Tm7sf4) and Nfatc1, a pivotal transcription factor for osteoclastogenesis, were markedly decreased by CF-E treatment. The inhibitory effect of CF-E on RANKL-induced osteoclastogenesis was associated with the suppression of NFATc1 expression, not by regulation of mitogen-activated protein kinases and NF-κB activation but by the inactivation of phospholipase C gamma 1 and 2. These results indicate that CF-E has an inhibitory effect on osteoclast differentiation and formation, and they suggest the possibility of CF-E as a traditional therapeutic agent against bone-resorptive diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis.

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.

Studies on Intracellular Regulatory Proteins of Pancreatic Exocrine Secretion (이자효소 분비에 관여하는 세포 내 조절 단백에 대한 연구)

  • Chung, Ku-Yong;Choi, Jae-Won;Choi, Hong-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.243-257
    • /
    • 1996
  • CCK and cholinergic agonist stimulate enzyme release from the pancreatic acini via G-protein-mediated activation of phospholipase C, In contrast secretin and related peptides increase the level of cAMP and activate cAMP-dependent protein kinase. Camostat, a synthetic protease inhibitor, causes pancreatic hypertrophy and hyperplasia by increasing the CCK release. In this study, the secretagogue-induced changes of intracellular proteins were examined in the dispersed pancreatic acini of rats with or without camostat treatment. Camostat(FOY-305, 200 mg/kg, p.o.) was given for 4 days twice daily and the dispersed acini were prepared at 12 bouts after last treatment. The profiles of Intracellular phosphoproteins were analyzed by two-dimensional gel electrophoresis after incubating the acini with $^{32}P$. The amylase release from the dispersed acini was measured. The pancreatic weight was increased to 126% of control, while amylase activity per mg acinar protein decreased to 41% of control, The maximum response of amylase release from dispersed acini to CCK-8 or carbachol was markedly decreased(65% or 46% of control, respectively). The group of intracellular proteins(24 kD, pI $4.5{\sim}8.5$) was increased in quantity by camostat. CCK-8 or secretin increased phosphorylation of a protein(34 kD, pI 4.7) in camostat-treated as well as control rats. CCK-8 increased tyrosine phosphoryiation in the acini of control rats. However, in camostat-treated rats, the basal level of tyrosine phosphorylation was increased and it was rather decreased by CCK-8. Secretin had no effect on the level of tyrosine phosphorylation in acini. These results indicate that both phospholipase C and adenylate cyclase induce phosphorylation of an intracellular acinar protein(34 kD, pI 4.7) and camostat treatment increases the basal level of tyrosine phosphorylation in acinar cells. And these results suggest that not only serine/threonine protein kinase but also protein tyrosine kinase/phosphatase are involved in the process of CCK receptor mediated stimulation-secrelion coupling.

  • PDF

Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell (Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전)

  • Park, Sung-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.2
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF

Physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via regulating calcium signaling

  • Ding, Ning;Lu, Yanzhu;Cui, Hanmin;Ma, Qinyu;Qiu, Dongxia;Wei, Xueting;Dou, Ce;Cao, Ning
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.154-159
    • /
    • 2020
  • We investigated the effects of physalin A, B, D, and F on osteoclastogenesis induced by receptor activator of nuclear factor κB ligand (RANKL). The biological functions of different physalins were first predicted using an in silico bioinformatic tool (BATMAN-TCM). Afterwards, we tested cell viability and cell apoptosis rate to analyze the cytotoxicity of different physalins. We analyzed the inhibitory effects of physalins on RANKL-induced osteoclastogenesis from mouse bone-marrow macrophages (BMMs) using a tartrate-resistant acid phosphatase (TRAP) stain. We found that physalin D has the best selectivity index (SI) among all analyzed physalins. We then confirmed the inhibitory effects of physalin D on osteoclast maturation and function by immunostaining of F-actin and a pit-formation assay. On the molecular level, physalin D attenuated RANKL-evoked intracellular calcium ([Ca(2+)](i)) oscillation by inhibiting phosphorylation of phospholipase Cγ2 (PLCγ2) and thus blocked the downstream activation of Ca2+/calmodulin-dependent protein kinases (CaMK)IV and cAMP-responsive element-binding protein (CREB). An animal study showed that physalin D treatment rescues bone microarchitecture, prevents bone loss, and restores bone strength in a model of rapid bone loss induced by soluble RANKL. Taken together, these results suggest that physalin D inhibits RANKL-induced osteoclastogenesis and bone loss via suppressing the PLCγ2-CaMK-CREB pathway.

Anti-inflammatory Effect of Biotin and Plant extracts

  • Y. J. Joo;S. W. Jung;Kim, B. R.;Kim, I. Y.;Lee, J. D.;H. C. Ryoo;Lee, S. H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.601-610
    • /
    • 2003
  • Biotin is a water-soluble vitamin used as a skin conditioning agent and promotes the formation of intercellular lipid layers through increased lipid synthesis, which improves the skin's natural barrier function. The anti-inflammatory effects of biotin have been investigated using in vitro assay models, such as MTT assay, measurements of concentrations of nitric oxide(NO), prostaglandin E2(PGE$_2$), and inhibition rate of 5-lipoxygenase(5-LOX). In comparison with biotin, other plant extracts were tested at the same time which were kudzu vine extract, sage extract, paeonia extract, and dipotassium glycyrrhetinate. Nitric oxide is a signal molecule with functions such as neurotransmission, local vascular relaxation, and anti-inflammation in many physiological and pathological processes. NO can cause apoptosis and necrosis of target cells such as keratinocytes and is generated from L-arginine by nitric oxide synthase (NOS). Prostanoids, including prostaglandins and thromboxanes, are generated by the phospholipase $A_2$/cyclooxygenase(COX) pathway, and leukotrienes are generated by the 5-lipoxygenase pathway from arachidonic acid. Prostaglandin E2 recently have been shown to be beneficial in the resolution of tissue injury and inflammation, also has been implicated as an immunosuppressive agent and plasma levels of PGE$_2$ are elevated in patients sustaining thermal injury. Lipoxygenase metabolites from arachidonic acid have been implicated in inflammation, anti-inflammatory activity of the raw materials was evaluated in vitro by the offered inhibition of lipoxygenase.

  • PDF