• Title/Summary/Keyword: phospholipase A2

Search Result 478, Processing Time 0.031 seconds

Signaling Pathway of Lysophosphatidic Acid-Induced Contraction in Feline Esophageal Smooth Muscle Cells

  • Nam, Yun Sung;Suh, Jung Sook;Song, Hyun Ju;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • Lysolipids such as LPA, S1P and SPC have diverse biological activities including cell proliferation, differentiation, and migration. We investigated signaling pathways of LPA-induced contraction in feline esophageal smooth muscle cells. We used freshly isolated smooth muscle cells and permeabilized cells from cat esophagus to measure the length of cells. Maximal contraction occurred at $10^{-6}M$ and the response peaked at 30s. To identify LPA receptor subtypes in cells, western blot analysis was performed with antibodies to LPA receptor subtypes. LPA1 and LPA3 receptor were detected at 50 kDa and 44 kDa. LPA-induced contraction was almost completely blocked by LPA receptor (1/3) antagonist KI16425. Pertussis toxin (PTX) inhibited the contraction induced by LPA, suggesting that the contraction is mediated by a PTX-sensitive G protein. Phospholipase C (PLC) inhibitors U73122 and neomycin, and protein kinase C (PKC) inhibitor GF109203X also reduced the contraction. The PKC-mediated contraction may be isozyme-specific since only $PKC{\varepsilon}$ antibody inhibited the contraction. MEK inhibitor PD98059 and JNK inhibitor SP600125 blocked the contraction. However, there is no synergistic effect of PKC and MAPK on the LPA-induced contraction. In addition, RhoA inhibitor C3 exoenzyme and ROCK inhibitor Y27632 significantly, but not completely, reduced the contraction. The present study demonstrated that LPA-induced contraction seems to be mediated by LPA receptors (1/3), coupled to PTX-sensitive G protein, resulting in activation of PLC, PKC-${\varepsilon}$ pathway, which subsequently mediates activation of ERK and JNK. The data also suggest that RhoA/ROCK are involved in the LPA-induced contraction.

Human anti-peptidoglycan-IgG-mediated opsonophagocytosis is controlled by calcium mobilization in phorbol myristate acetate-treated U937 cells

  • Kim, Min Jung;Rah, So-Young;An, Jang-Hyun;Kurokawa, Kenji;Kim, Uh-Hyun;Lee, Bok Luel
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ${\Delta}$tagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ${\Delta}$tagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores and anti-PGN-IgGdependent $Ca^{2+}$ mobilization is controlled via a phospholipase C${\gamma}$-2-mediated pathway.

Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom (Sweet BV의 함량분석과 시술 부위별 LD50 관찰)

  • Chu, Ching-Seng;Park, Hee-Soo;Kim, Min-Ki;Cha, Bae-Chun;Lee, Eun;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.2 s.23
    • /
    • pp.81-86
    • /
    • 2007
  • Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD$^{50}$ was conducted intravenous, subcutaneous, and intramuscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. 2. LD$^{50}$ of ICR mice with Sweet Bee Venom was more than 20mg/kg in subcutaneous injection and intravenous injection, between 15mg/kg and 20mg/kg in muscular injection. 3. LD$^{50}$ of ICR mice with Bee Venom was between 6 and 9mg/kg in subcutaneous injection and intravenous injection, and more than 9mg/kg in muscular injection. Conclusion : Above results indicate that Sweet Bee Venom was more safe than Bee Venom and the process of removing enzymes was well rendered in Sweet Bee Venom.

Anti-proliferative and Pro-apoptic Effects of Dan-Seon-Tang in Human Leukemia Cells (인체 혈구암세포에 대한 단선탕(丹仙湯) 추출물의 증식억제 및 세포사멸 유도에 관한 연구)

  • Kim, Seong-Hwan;Park, Sang-Eun;Hong, Sang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.565-583
    • /
    • 2011
  • Objectives : This study investigated the biochemical mechanisms of anti-proliferative and pro-apoptotic effects of the water extract of Dan-Seon-Tang (DST) in human leukemia U937 cells. Methods : U937 cells were exposed to DST and growth inhibition was measured by MTT assay. Results : Exposure of U937 cells to DST resulted in the growth inhibition in a concentration-dependent manner. This inhibitory effect was associated with morphological changes and apoptotic cell death such as formation of apoptotic bodies, increased populations of apoptotic-sub G1 phase and induction of DNA fragmentation. The induction of apoptotic cell death in U937 cells by DST was associated with up-regulation of death receptor 4 (DR4) and down-regulation of Bid, surviving and cellular inhibition of apoptosis protein-2 (cIAP-2) expression. DST treatment also induced the proteolytic activation of caspase-3, caspase-8 and caspase-9, and a concomitant degradation of caspase-3 substrate proteins such as poly (ADP-ribose) polymerase (PARP), phospholipase (PLC)-${\gamma}1$, ${\beta}$-catenin and DNA fragmentation factor 45/inhibotor of caspase activated DNAse (DFF45/ICAD). Furthermore, apoptotic cell death by DST was significantly inhibited by caspase-3 specific inhibitor z-DEVD-fmk, demonstrating the important role of caspase-3. Conclusions : These findings suggest that herb prescription DST may be a potential chemotherapeutic agent for the control of human leukemia U937 cells; further study is needed to identify the active compounds.

Characterization of KRC-108 as a TrkA Kinase Inhibitor with Anti-Tumor Effects

  • Lee, Hyo Jeong;Moon, Yeongyu;Choi, Jungil;Heo, Jeong Doo;Kim, Sekwang;Nallapaneni, Hari Krishna;Chin, Young-Won;Lee, Jongkook;Han, Sun-Young
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.360-367
    • /
    • 2022
  • Tropomyosin receptor kinase A (TrkA) protein is a receptor tyrosine kinase encoded by the NTRK1 gene. TrkA signaling mediates the proliferation, differentiation, and survival of neurons and other cells following stimulation by its ligand, the nerve growth factor. Chromosomal rearrangements of the NTRK1 gene result in the generation of TrkA fusion protein, which is known to cause deregulation of TrkA signaling. Targeting TrkA activity represents a promising strategy for the treatment of cancers that harbor the TrkA fusion protein. In this study, we evaluated the TrkA-inhibitory activity of the benzoxazole compound KRC-108. KRC-108 inhibited TrkA activity in an in vitro kinase assay, and suppressed the growth of KM12C colon cancer cells harboring an NTRK1 gene fusion. KRC-108 treatment induced cell cycle arrest, apoptotic cell death, and autophagy. KRC-108 suppressed the phosphorylation of downstream signaling molecules of TrkA, including Akt, phospholipase Cγ, and ERK1/2. Furthermore, KRC-108 exhibited antitumor activity in vivo in a KM12C cell xenograft model. These results indicate that KRC-108 may be a promising therapeutic agent for Trk fusion-positive cancers.

몇 가지 PBTs (Persistent, Bioaccumulative, Toxic Chemicals)가 생태계 곤충에 미치는 영향

  • Lee Seun Yeong;Kim Yong Gyun
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • Pollutants that are persistent, bioaccurnulative, and toxic have been linked to numerous adverse effects in human and animals, PBTs include heavy metals, polychlorinated biphenyls (PCBs), dioxins, polycyclic aromatic compounds (PACs) in addition to pesticides. This study focuses on toxic effects of the PBTs except pesticides on insects. Eight PBTs were selected from subgroups: three heavy metals (Pb, Hg, and Cd), two PCB mixtures (Aroclor mixtures 1 and 2), 2,3,7,8-tetrachlorodibenzo-p-dioxin, two monophenols (4-octylphenol and 4-nonylphenol), and tetrabutyltin, Beet armyworm, Spodoptera exigua, was used as test target insect species. Three physiological markers (metamorphosis, immune reaction, and follicle patency) were assessed in each exposure to different doses of the PCBs. Heat-shock proteins as molecular markers were also analyzed in response to the PCBs. All tested PBTs were toxic to metamorphosis from larvae to pupae when they were applied with diet. Two PCB mixtures were the most toxic compounds in this assay by giving significant toxicity at 0.005 ppm, while others had from 10 to 1000 ppm. Dioxin (0.1 ppb), tetrabutyltin (0.1 ppb), Pb (10 ppb), and Hg (0,01 ppb) were potent to inhibit immune reactions analyzed by inducing phenoloxidase activity and blocked phospholipase $A_2$ enzyme, Tetrabutyltin and dioxin significantly induced follicle cell patency, but their effects were lower than that of endogenous juvenile hormone, Dioxin, Pb, Hg, and Cd could induce the expression of heat shock proteins that were detected by immunoblotting against human HSP70 monoclonal antibody. HSP78 and HSP80 were upregulated in response to the PBTs. This expression was detected from the fat body and epidermis at as fast as 4h after injection. All these results clearly suggest that PBTs give significant ecotoxicity to insects that are valuable organisms in our environment.

  • PDF

Induction of Apoptosis and Inhibition of NO Production by Piceatannol in Human Lung Cancer A549 Cells (A549 인체 폐암세포에서 piceatannol에 의한 apoptosis 유발과 NO 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.815-822
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene), a natural stilbene, is an analogue of resveratrol. Although recent experimental data have revealed the health benefit potency of piceatannol, the molecular mechanisms underlying the anti-cancer activity have not yet been studied in detail. In the present study, the further possible mechanisms by which piceatannol exerts its pro-apoptotic action in cultured human lung cancer A549 cells were investigated. Exposure of A549 cells to piceatannol resulted in growth inhibition and induction of apoptosis. Apoptosis induction of A549 cells by piceatannol showed correlation with proteolytic activation of caspase-3, -8, and -9, and concomitant degradation of activated caspase-3 target proteins such as poly (ADP-ribose) polymerase, phospholipase C-${\gamma}1$, ${\beta}$-catenin, and Inhibitor caspase-activated DNase. The increase in apoptosis by piceatannol treatment was also associated with an increase of pro-apoptotic Bax expression and decrease of anti-apoptotic Bcl-2 and Bcl-xL expression, and caused down-regulation of the inhibitor of apoptosis protein family members and up-regulation of Fas and Fas legend. In addition, piceatannol treatment markedly inhibited the expression of mRNA and proteins of inducible nitric oxide (NO) synthase, and the levels of NO production were progressively down-regulated by piceatannol treatment in a dose-dependent fashion. The results indicate that piceatannol may have therapeutic potential against human gastric cancer cells.

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.1
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

Production and Purification of Human Lipocortin-I Secreted by Recombinant Saccharomyces cerevisiae (재조합 Saccharomyces cerevisiae로부터 인체 리포코틴-I의 분비 생산 및 정제)

  • 김병문;정봉현
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.343-348
    • /
    • 1995
  • Human lipocorin-I(LCI) is a calcium ion-dependent and phospholipid-binding protein which exhibits an anti-inflammatory activity by inhibiting phospholipase A2 activity. In this study, the LCI gene containing its own terminator region was joined to GAL10 promoter-ppL (prepro-leader sequence of mating factor a). An ATG start codon of LCI gene was placed at downstream with KR endoprotease recognition site(Lys-Arg) of ppL. Recombinant S. cerevisiae harboring the LCI expression/secretion vector, pYGLPT5, was aerobicall grown on a liquid YPDG medium al $30^{\circ}C$ for 72hys. The whole cell and culture supernatant were separated after centrifugation, and the expressed LCI was analyzed by SDS-PAGE and western blotting methods. A majority fraction of the expressed LCI was found to be accumulated in the intracellular fraction, resulting in very low secretion efficiency of about 7.4%. About $500mg/\ell$ of LCI was extracellularly produced by the fed-batch culture employing the controlledfeeding of glucose and galactose. The secreted LCI was purified by ultrafiltration and hydroxylapatite column chromatography, and a purity of more than 99% was obtained.

  • PDF

Real-time Imaging of Inositol 1,4,5-trisphosphate Movement in Mouse Salivary Gland Cells

  • Hong, Jeong-Hee;Lee, Syng-Ill;Shin, Dong-Min
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.125-129
    • /
    • 2008
  • Inositol 1,4,5-trisphosphate ($IP_3$) plays an important role in the release of $Ca^{2+}$ from intracellular stores into the cytoplasm in a variety of cell types. $IP_3$ translocation dynamics have been studied in response to many types of cell signals. However, the dynamics of cytosolic $IP_3$ in salivary acinar cells are unclear. A green fluorescent protein (GFP)-tagged pleckstrin homology domain (PHD) was constructed and introduced into a phospholipase C ${\delta}1$ (PLC ${\delta}1$) transgenic mouse, and then the salivary acinar cells were isolated. GFP-PHD was heterogeneously localized at the plasma membrane and intracellular organelles in submandibular gland and parotid gland cells. Application of trypsin, a G protein-coupled receptor activator, to the two types of cells caused an increase in GFP fluorescence in the cell cytoplasm. The observed time course of trypsin-evoked $IP_3$ movement in acinar cells was independent of cell polarity, and the fluorescent label showed an immediate increase throughout the cells. These results suggest that GFP-PHD in many tissues of transgenic mice, including non-cultured primary cells, can be used as a model for examination of $IP_3$ intracellular dynamics.