• 제목/요약/키워드: phosphoinositide 3-kinase

검색결과 108건 처리시간 0.035초

Comparison of Bradykinin- and Platelet-Derived Growth Factor-Induced Phosphoinositide Turnover in NIH 3T3 Cells

  • Lee, Kee-Ho;Ryu, Yong-Wun;Yoo, Young-Do;Bai, Dong-Hoon;Yu, Ju-Hyun;Kim, Chang-Min
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.549-554
    • /
    • 1996
  • Phosphoinositide turnover in response to platelet-derived growth factor, epidermal growth factor, and bradykinin was evaluated in NIH 3T3 cells. Platelet-derived growth factor and bradykinin induced a significant increase in incorporation of $^{32}P$ into phosphatidylinositol (PI), phosphatidylinositol 4-monophosphate (PIP), and phosphatidylinositol 4.5-bisphosphate ($PIP_2$) in serum-starved NIH 3T3 cells. However, epidermal growth factor increased incorporation of $^{32}P$ into these phosphoinositides by only a small amount. Stimulation with platelet-derived growth factor, not bradykinin, caused a rapid elevation of PI and PIP kinase activities that were maximally activated within 10 min. The maximal levels of their elevation in cells with plateletderived growth factor stimulation were 3.2-fold for PI kinase, and 2.1-fold for PIP kinase. Short term pretreatment of NIH 3T3 cells with phorbol 12-myristate 13-acetate, activator of protein kinase C. caused an approximately 60% decrease in platelet-derived growth factor-induced PI kinase activities, indicating the feedback regulation of phosphoinositide turnover by protein kinase C. These results suggest that although the enhancement of phosphoinositide turnover is a rapidly occurring response in platelet-derived growth factor- or bradykinin-stimulated NIH 3T3 cells, phosphoinositide kinases may be associated with initial signal transduction pathway relevant to platelet-derived growth factor but not to bradykinin.

  • PDF

Phosphorylation of Eukaryotic Elongation Factor 2 Can Be Regulated by Phosphoinositide 3-Kinase in the Early Stages of Myoblast Differentiation

  • Woo, Joo Hong;Kim, Hye Sun
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.294-301
    • /
    • 2006
  • We have previously reported that phosphorylation of eukaryotic elongation factor 2 (eEF2) is related to the differentiation of chick embryonic muscle cells in culture. In the present study, we found that eEF2 phosphorylation declined shortly after induction of differentiation of L6 myoblasts, when the cells prepare for terminal differentiation by withdrawing from the cell cycle. This decrease in phosphorylation was prevented by inhibitors of phosphoinositide 3-kinase (PI3-kinase) that strongly inhibit myoblast differentiation. We hypothesized that PI3-kinase plays an important role in myoblast differentiation by regulating eEF2 phosphorylation in the early stages of differentiation. To test this hypothesis, myoblasts were synchronized at in $G_2/M$ and cultured in fresh differentiation medium (DM) or growth medium (GM). In DM the released cells accumulated in $G_0$/$G_1$ while in GM they progressed to S phase. In addition, cyclin D1 was more rapidly degraded in DM than in GM, and eEF2 phosphorylation decreased more. Inhibitors of PI3-kinase increased eEF2 phosphorylation, but PI3-kinase became more activated when eEF2 phosphorylation declined. These results suggest that the regulation of L6 myoblast differentiation by PI3-kinase is related to eEF2 phosphorylation.

Serine 389 phosphorylation of 3-phosphoinositide-dependent kinase 1 by UNC-51-like kinase 1 affects its ability to regulate Akt and p70 S6kinase

  • Kim, Kidae;Park, Sung Goo;Park, Byoung Chul;Kim, Jeong-Hoon;Kim, Sunhong
    • BMB Reports
    • /
    • 제53권7호
    • /
    • pp.373-378
    • /
    • 2020
  • Phosphorylation of the signaling component by protein kinase often leads to a kinase cascade or feedback loop. 3-Phosphoinositide-dependent kinase 1 (PDK1) signaling pathway diverges into various kinases including Akt and p70 S6 kinase (p70S6k). However, the PDK1 feedback mechanism remains elusive. Here, we demonstrated that UNC-51-like kinase (ULK1), an autophagy initiator kinase downstream of mechanistic target of rapamycin (mTOR), directly phosphorylated PDK1 on serine 389 at the linker region. Furthermore, our data showed that this phosphorylation affected the kinase activity of PDK1 toward downstream substrates. These results suggest a possible negative feedback loop between PDK1 and ULK1.

Peroxiredoxin 6 Promotes Lung Cancer Cell Invasion by Inducing Urokinase-Type Plasminogen Activator via p38 Kinase, Phosphoinositide 3-Kinase, and Akt

  • Lee, Seung Bum;Ho, Jin-Nyoung;Yoon, Sung Hwan;Kang, Ga Young;Hwang, Sang-Gu;Um, Hong-Duck
    • Molecules and Cells
    • /
    • 제28권6호
    • /
    • pp.583-588
    • /
    • 2009
  • The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Role of Shc and Phosphoinositide 3-Kinase in Heregulin-Induced Mitogenic Signaling via ErbB3

  • Kim, Myong-Soo;Koland, John G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.507-513
    • /
    • 2000
  • ErbB3/HER3 is a cell surface receptor which belongs to the ErbB/HER subfamily of receptor protein tyrosine kinases. When expressed in NIH/3T3 cells, ErbB3 can form heterodimeric coreceptor with endogenous ErbB2. Among known intracellular effectors of the ErbB2/ErbB3 are mitogen-activated protein kinase (MAPK) and phosphoinositide (PI) 3-kinase. In the present study, we studied relative contributions of above two distinct signaling pathways to the heregulin-induced mitogenic response via activated ErbB3. For this, clonal NIH-3T3 cell lines expressing wild-type ErbB3 and ErbB3 mutants were stimulated with $heregulin{\beta}_1$. While cyclin D1 level was markedly high and further increased by treatment of heregulin in cells expressing wild-type ErbB3, the elimination of either Shc binding or PI 3-kinase binding lowered both levels. This result was supported by the reduction of cyclin $D_1$ expression by preteatment with MAPK kinase inhibitor or PI 3-kinase inhibitor before stimulation with heregulin. In accordance with the cyclin $D_1$ expression, elimination of either Shc binding or PI 3-kinase binding reduced the heregulin-induced DNA synthesis and cell growth rate. Our results obtained by the comparison of wild-type and ErbB3 mutants indicate that the full induction of the cell cycle progression through $G_1/S$ phase by ErbB3 activation is dependent on both Shc/MAPK and PI 3-kinase signal transduction pathways.

  • PDF

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu;Nguyen, Tu Thi Ngoc;Lee, Sang Yoon
    • BMB Reports
    • /
    • 제47권7호
    • /
    • pp.361-368
    • /
    • 2014
  • Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.

Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis

  • Woo, Joo-Hong;Kim, Min-Jeong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • 제14권3호
    • /
    • pp.147-154
    • /
    • 2010
  • It is well-established that phosphoinositide 3-kinase (PI3-kinase) regulates myogenesis by inducing transcription of myogenin, a key muscle regulatory factor, at the initiation of myoblast differentiation. In this study, we investigated the role of PI3-kinase in cells that have committed to differentiation. PI3-kinase activity increases during myogenesis, and this increase is sustained during the myogenic process; however, its function after the induction of differentiation has not been investigated. We show that LY294002, a PI3-kinase inhibitor, blocked myoblast fusion even after myogenin expression initially increased. In contrast to the inhibitory effects of LY294002 on myogenin mRNA levels during the initiation of differentiation, LY294002 blocked the accumulation of myogenin protein without affecting its mRNA level after differentiation was induced. Treatment with cycloheximide, a translation inhibitor, or actinomycin D, a transcription inhibitor, indicated that the stability of myogenin protein is lower than that of its mRNA. LY294002 inhibited the activities of several important translation factors, including eukaryotic elongation factor-2(eEF2), by altering their phosphorylation status. In addition, LY294002 blocked the incorporation of [$^{35}S$]methionine into newly synthesized proteins. Since myogenin has a relatively short half-life, LY294002-mediated inhibition of post-transcriptional processes resulted in a rapid depletion of myogenin protein. In summary, these results suggest that PI3-kinase plays an important role in regulating the expression of myogenin through post-transcriptional mechanisms after differentiation has been induced.

RAW264.7 세포에서 Cymbopogon Citratus 에탄올 추출물의 HO-1 유도를 통한 항산화 효과 (Anti-Oxidative Effects of Cymbopoton Citratus Ethanol Extract through the Induction of HO-1 Expression in RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권4호
    • /
    • pp.73-82
    • /
    • 2023
  • Purpose : Cymbopogon citratus, also known as lemongrass, has widely spread around the world and its essential oil is usually applied in food, perfume, and other industrial purposes. In addition, C. citratus has also been used for the treatment of inflammation, digestive disorders, and diabetes in traditional medicine. In this study, the antioxidative activity of C. citratus ethanol extract (CCEE) was analyzed in RAW 264.7 cells through the induction of one of phase II enzymes, heme oxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor (Nrf)2, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/Akt. Methods : The antioxidative activity of CCEE against oxidative stress and its underlying molecular mechanisms were analyzed by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results : The results exhibited that CCEE potently attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS levels in a dose-dependent manner without any cytotoxicity. CCEE treatment significantly induced the expression of HO-1 which is known for its antioxidative capacity. In addition, CCEE treatment significantly upregulated the expression of Nrf2, a corresponding transcription factor for the regulation of antioxidative enzymes, which was in accordance with the HO-1 overexpression. MAPK and PI3K/Akt were also evaluated for their important roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, the potent HO-1 expression was mediated by not extracellular regulated kinase (ERK), c-Jun NH2 terminal kinase (JNK), p38, but phosphoinositide 3-kinase (PI3K) phosphorylation. To confirm the antioxidative activity of CCEE-induced HO-1 expression, oxidative damage was initiated by t-BHP and attenuated by CCEE treatment, which was identified by HO-1 selective inhibitor and inducer. Conclusion : Consequently, CCEE potently induced the HO-1-mediated antioxidative potential through the modulation of Nrf2 and PI3K/Akt signaling pathways in RAW 264.7 cells. These results suggest that CCEE could be a promising strategy for the mitigation against cellular oxidative damage.

소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도 (THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN)

  • 임승우;김정희
    • Journal of Yeungnam Medical Science
    • /
    • 제7권1호
    • /
    • pp.39-50
    • /
    • 1990
  • 세포막의 정보전달기전중 phosphoinositide system은 정보가 전달될때 phospholipase C 효소의 작용으로 phosphatidyl inositol bisphosphate로부터 inositol triphosphate($IP_3$)와 diacylglycerol이 생성되며 $IP_3$는 다시 $IP_3$kinase에 의해 inositol tetrakisphosphate($IP_4$)로 되어 이차전령 물로서 작용한다. 본 연구는 $IP_3$kinase효소가 $Ca^{2+}$와 calmodulin에 의해 활성화되는 성질을 이용하여 calmodulin을 정제하고 $IP_3$kinase효소와의 친화도를 비교 관찰하였다. Calmodulin정제는 phenyl-Sepharose resin을 이용하여 column chromatography를 시행하여 정제확인하였으며 분자량이 17,000임을 SDS-polyacrylamide gel 전기영동으로 확인하였다. 정제된 calmodulin을 affigel column에 결합시킨 gel에 소의 뇌로부터 분리한 $IP_3$kinase효소가 담긴 시료를 calmodulin-affigel column에 적용하여 결합 및 유출정도를 비교하였으며 $Ca^{2+}$이 든 buffer에서 친화도가 가장 컸으며 유출은 EGTA용액에서 일부 유출되었으며 calmodulin/$Ca^{2+}$이 든 buffer에선 강한 유출정도를 관찰하였다. 그러나 calmodulin/$Ca^{2+}$$IP_3$kinase효소의 활성을 증가시키며 calmodulin이 단백질이어서 정제면에서 효소와의 분리가 쉽지않아 여러 다른 detergent를 적용하였으나 0.2% chaps buffer에서 집중된 유출을 관찰하였다.

  • PDF

넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구 (Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus))

  • 정태혁;윤주연;지근호;서용배;김영태
    • 생명과학회지
    • /
    • 제24권4호
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K)는 항산화 제어반응, 심근세포 성장, 및 세포 내 특수반응 뿐만 아니라 세포분화, 생장, 운동, 식균 및 내항작용, 세포 골격유지에 관여하는 등 세포 신호체계에서 핵심 역할을 하는 효소이다. PI3K는 세 그룹으로 나누어지며 type I PI3K는 leukocyte에서 우선적으로 발현되고 G-proteins의 ${\beta}{\gamma}$ subunits에 의해서 활성화 된다. 본 연구에서는 넙치(Paralichthys olivaceus)의 $PI3K{\gamma}$를 암호화하는 cDNA를 클로닝하였다. 넙치의 $PI3K{\gamma}$는 1,341 bp 염기로 구성되는 한 개의 ORF를 가지며 이 단백질은 447 아미노산으로 구성되어있다. $PI3K{\gamma}$는 zebrafish의 $PI3K{\gamma}$와 89.6%, mouse와는 84.7%, Norway rat와는 84%, human의 $PI3K{\gamma}$와는 74.9%가 아미노산 상동성을 나타내었다. $PI3K{\gamma}$유전자의 대장균에서 발현을 위하여 pET-44a(+)-PI3K 재조합 DNA를 구축하여 대장균에서 발현시킨 결과 49 kDa의 재조합 단백질이 과발현 됨을 확인 할 수 있었다. His-tag affinity chromatography를 이용하여 $PI3K{\gamma}$단백질을 순순 분리하였으며 wortmannin을 이용하여 $PI3K{\gamma}$의 활성을 분석하였다.