• Title/Summary/Keyword: phosphatidyl inositol phosphate

Search Result 5, Processing Time 0.019 seconds

Effects of sodium molybdate on myo-inositol phospholipid metabolism-related enzymes in peripheral nerves of lead-intoxicated rats. (Sodium molybdate가 납중독 랫드의 말초신경내 myo-inositol 인지질 대사 관련 효소에 미치는 영향)

  • 박성환;정명규;조해용;최창하;김명녀
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • We have previously demonstrated that sodium molybdate(Mo) improved lead-intoxicated status by enhancing the metabolism of mao-inositol-related phospholipids in sciatic nerves isolated from rats. In this study, in order to address the reduction mechanism of Mo for lead toxicity, effects of Mo on cystidine-diglyceride transferase, phosphatidylinositol kinase, and phosphatidyl inositol-4-phosphate kinase, involved in mao-inositol metabolism of nerve, were investigated in vivo and in vitro. Mo significantly increased the activities of cystidine- diglyceride transferase and phosphatidylinositol kinase in lead-intoxicated rat, and the pattern of increase was dose-dependent manner. However, Mo did not affect the activity of phosp- hatidylinositiol-4-phosphate kinase in normal and lead-intoxicated rats. We also found that Mo affected the activities of phopholipid metabolism-related enzymes not by the indirect manner such as activation of another metabolic pathway but by the direct manner. These results suggest that the improvement mechanism of Mo for lead-intoxicated status might be a normalization of the activities of phospholipid metabolism-related enzymes in sciatic nerve.

  • PDF

Seasonal Changes in Concentrations of Proteins and Lipids in Growing Goat Oocytes

  • Sangha, G.K.;Bhatia, H.;Khera, K.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.36-40
    • /
    • 2007
  • Proteins and lipids not only provide a source of energy to the cell, but also play vital roles in modifying the physical properties and function of the biological membranes. In the present study, we investigated the biochemical constituents, viz. proteins and lipids, in growing oocytes of goat antral follicles during summer and winter seasons. Goat genitalia in phosphate buffered saline (pH 7.4) were brought to the laboratory within one hour of slaughter under aseptic conditions at $37^{\circ}C$. Oocytes were aspirated from normal small (<3 mm in diameter) and large (>3 mm) follicles and pooled for biochemical estimations. A significant increase in the amount of protein and lipid was observed with the growth of the oocyte. The amount of protein varied non-significantly with the season, while the amount of lipid varied significantly. The amounts of phospholipid, cholesterol, free fatty acid, and triglyceride increased with the growth of the oocyte, but no significant effect of season in these constituents was observed. Lysolecithin, sphingomyelin, and sterols were the polar lipids identified in both oocytes prepared from small follicles (small oocytes) as well as large follicles (large oocytes). In addition, the small oocytes also contained phosphatidyl serine, while large oocytes contained phosphatidyl glycerol phosphate and phosphatidyl inositol. Among non-polar lipids, triglycerides and long chain alcohols appear only in small oocytes and not in large oocytes. Monoglycerides, 1,2-diglycerides, 1,3-diglycerides and o-dialkyl glycerol ethers, fatty acids, fatty acid methyl esters, and wax esters were identified in both small and large oocytes. Information on biochemical composition of growing oocytes is relevant to oocyte and embryo competence, culture and cryopreservation.

Purification and Characterization of Proteins Inhibiting Phospholipase D Activity from Flounder (Paralichthys olivaceus) Brain (넙치 (Paralichthys olivaceus) 뇌로부터 phospholipase D 활성 억제 단백질의 정제 및 특성 규명)

  • SEO Jung-Soo;KIM Eun-Hi;HWAWG Eun-Young;KIM Nam Deuk;KIM Dong Sun;LEE Hyung-Ho;CHUNG Joon-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.370-377
    • /
    • 2001
  • Flounder brain cytosol contains protein inhibitors that markedly inhibit the activity of partially purified brain membrane phospholipase D (PLD) which is dependent on phosphatidylinositol 4,5-bisphosphate ($PIP_2$) but insensitive to ADP-ribosylation factor (ARF), The PLD inhibitors have been enriched through several chromatographic steps and characterized with respect to size and mechanism of inhibition. Sequential chromatography of the brain cytosol yielded six inhibitor fractions, Two (IIA and IIB) of six inhibitor fractions showed the $PIP_2$-phosphatase activities. IIA was identified as synaptojanin, a nerve terminal protein that has known to be a member of the inositolpolyphosphate 5-phosphatase family, by immunoblot analysis. IIB showed an apparent molecular mass of 158 kDa by Superose 12 gel filtration chromatography and was immunologically distinct from synaptojanin. IIB hydrolyzed $PIP_2$, yielding only phosphatidylinositol phosphate (PIP) as product, suggesting that IIB hydrolyzes only one phosphate from either the 4- or 5-position of PI (4,5)$P_2$. These studies demonstrate that the existence of multiple $PIP_2$-phosphatases have been implicated in the negative regulation of $PIP_2$-dependent PLD activity within flounder brain.

  • PDF

Differential Expressions of Apoptosis-related Genes in Lung Cancer Cell Lines Determine the Responsiveness to Ionizing Radiation

  • Lee, Su-Yeon;Choi, Moon-Kyung;Lim, Jung-Min;Wu, Hong-Gyun;Kim, Ju-Han;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • Radiotherapy would be the choice of treatment for human cancers, because of high cost-effectiveness. However, a certain population of patients shows a resistance to radiotherapy and recurrence. In an effort to increase the efficacy of radiotherapy, many efforts were driven to find the genes causing the unresponsiveness to ionizing radiation. In this paper, we compared the gene expression profiles of two lung cancer cell lines, H460 and H1299, which showed differential responses to ionizing radiations. Each cell were irradiated at 2 Gy, and harvested after 0, 2, 4, 8, 12 and 24 hours to examine the expressions. Two-way ANOVA analysis on time-series experiments of two cells could select 2863 genes differentially expressed upon ionizing radiation among 32,321 genes in microarray (p<0.05). We classified these genes into 21 clusters by SOM clustering according to the interaction between cell types and time. Two SOM clusters were enriched with apoptosis-related genes in pathway analysis. One cluster contained higher levels of phosphatidyl inositol 3-phosphate kinase (PI3K) subunits in H1299, radio-resistant cells than H460, radiosensitive cells. TRAIL receptors were expressed in H460 cells while the decoy receptor for TRAIL was expressed in H1299 cells. From these results, we could characterize the differential responsiveness to ionizing radiation according to their differential expressions of apoptosis-related genes, which might be the candidates to increase the power of radiotherapy.

Expression and Purification of the Phosphatase-like Domain of a Voltage-Sensing Phosphatase, Ci-VSP (막 전위 감지 탈인산화 효소, Ci-VSP의 유사 탈인산화 효소 도메인의 발현과 정제)

  • Kim, Sung-Jae;Kim, Hae-Min;Choi, Hoon;Kim, Young-Jun
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.1032-1038
    • /
    • 2011
  • Recently identified Ciona intestinalis voltage sensor-containing phosphatase (Ci-VSP) consists of an ion channel-like transmembrane domain (VSD) and a phosphatase-like domain. Ci-VSP senses the change of membrane potential by its VSD and works as a phosphoinositide phosphatase by its phosphatase domain. In this study, we present the construction of His-tagged phosphatase-like domain of Ci-VSP, its recombinant expression and purification, and its enzymatic activity behavior in order to examine the biochemical behavior of phosphatase domain of Ci-VSP without interference. We found that Ci-VSP(248-576)-His can be eluted with an elution buffer containing 25 mM NaCl and 100 mM imidazole during His-tag purification. In addition, we found the proper measurement condition for kinetics study of Ci-VSP(248-576)-His against p-nitrophenyl phosphate (pNPP). We measured the kinetic constant of Ci-VSP(248-576)-His at $37^{\circ}C$, pH 5.0 or 5.5, under 30 min of reaction time, and less than $2.0\;{\mu}g$ of protein amount. With these conditions, we acquired that Ci-VSP(248-576)-His has $K_m$ of $354{\pm}0.143\;{\mu}M$, $V_{max}$ of $0.0607{\pm}0.0137\;{\mu}mol$/min/mg and $k_{cat}$ of $0.359{\pm}0.009751\;min^{-1}$ for pNPP dephosphorylation. Therefore, we produced a pure form of Ci-VSP(248-576)-His, and this showed a higher activity against pNPP. This purified protein will provide the road to a structural investigation on an interesting protein, Ci-VSP.