• Title/Summary/Keyword: phosphate-buffered saline

Search Result 253, Processing Time 0.02 seconds

The Effect of Sintongchukea-tang (Shentongzhuyu-tang) on Bone Fusion in Rib Fractured Rats (신통축어탕(身痛逐瘀湯)이 늑골골절 유발 Rat의 골유합에 미치는 영향)

  • Nam, Dae-Jin;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.1-21
    • /
    • 2020
  • Objectives This study was designed to evaluate the bone regeneration effects of Sintongchukea-tang (SC) on rib fractured rats. Methods Rats were randomly divided into 5 groups (normal, control, positive control, SC low [SC-L] and SC high [SC-H]). All groups were subject to fractured rib except normal group. Normal group received no treatment at all. Control group was orally fed with phosphate buffered saline, and positive control group was medicated with tramadol (20 mg/kg). SC group was orally medicated with SC (50 mg/kg, 100 mg/kg) once a day for 14 days. The fracture healing process was observed by x-ray, micro CT and fracture tissue slide was observed by immunohistochemical staining. We analysed levels of transforming growth factor-β1, Ki67, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), receptor activator of nuclear factor kappa-β, tartrate resistant acid phosphatase (TRAP) and analysed levels of Osteocalcin in plasma. We measured levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), ALP, blood urea nitrogen (BUN) and creatinine in plasma, for hepatotoxicity and nephrotoxicity of SC. Results Though X-ray and micro-computed tomography, more callus formation was observed and bone union was progressing. Through Hematoxylin and Eosin, callus formation was increased compared to the control group. Runx2 level at SC-H was significantly increased and TRAP level at SC-L was significantly decreased compared with the control group. AST, ALT, ALP, BUN and creatinine were not statistically different from the control group. Conclusions As described above, SC promoted fracture healing by stimulating the bone regeneration factor. And SC shows no hepatotoxicity and nephrotoxicity. In conclusion, it seems that SC helps to promote fracture regeneration and it can be used clinically to patients with fracture.

The Preclinical Study of Hyeolbuchugeo-tang (Xuefuzhuyu-tang) on Bone Healing in Rats with Rib Fracture (골절 유발 Rat에 대한 혈부축어탕(血府逐瘀湯)의 전임상 연구)

  • Huh, Gun;Oh, Min-Seok
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.3
    • /
    • pp.23-44
    • /
    • 2020
  • Objectives The purpose of this study is to evaluate the healing effect of Hyeolbuchugeo-tang (HC) in rats with rib fracture. Methods Rats were randomly divided into 5 groups (naive, control, positive control, HC-L and HC-H). All groups except naive group were subjected to bone fracture of rib. Naive group received no treatment at all. Control group was fed with phosphate buffered saline. Positive control group was orally medicated with tramadol. Experimental group was orally medicated with HC extract (50 mg/kg for low concentration [HC-L], 100 mg/kg for high concentration [HC-H]). X-ray and micro-computed tomography (micro-CT) were conducted to assess the effect of HC. We analysed the level of 2) transforming growth factor-β1 (TGF-β1), Ki67, alkaline phosphatase (ALP), receptor activator of nuclear factor kappa-β, runt-related transcription factor 2 (Runx2) and tartrate resistant acid phosphatase (TRAP) on 7 and 14 days after fracture. ALP, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, creatinine was measured for safety assessment. Results X-ray and micro-CT, showed HC enhance bone repair process. Callus formation was increased in experimental group at 7 days after fracture, but decreased at 14 days after fracture. 7 days after fracture, the level of TGF-β1 in experimental group was decreased. The level of Ki67, Runx2 in HC-H, TRAP in HC-L was increased. 14 days after fracture, the level of Ki67 in HC-L and HC-H was decreased. The level of ALP, Runx2, BUN in HC-L, TRAP in HC-L and HC-H was increased. Conclusions Taken together the results, HC promoted healing of bone fracture. In conclusion, HC has a potential to promote healing of bone fracture.

THE EFFECTS OF GINGIVAL FIBROBLAST ON THE MINERALIZATION OF THE RAT BONE MARROW STROMAL CELL (백서 골수세포의 석회화 과정에 미치는 치은 섬유아세포의 영향)

  • Kim, Seuk-Yong;Kwon, Young-Hyuk;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.2
    • /
    • pp.210-221
    • /
    • 1995
  • The purpose of this study was performed to investigate the mineralization and differentiation of osteobalsts for bone regeneration in vitro and the effect of rate of the composition in periodontal cells on mineralization. For this study, healthy gingival tissues were surgically obtained from the patients during 1st premolar extraction for the purposes of orthodontic treament. Gingival tissue was washed several time with Phosphate buffered saline contained high concentration of antibiotics and antifungal agent, and cultured in Dulbecco's Modified Eagle's Medium(DMEM, Gibco, U.S.A.). Every cell were cultured in state at $37^{\circ}C$, 100% of humidity, 5% of $CO_2$ incubator. Bone marrow stromal cells were isolated from 5-clay-old rat femur with using medium irrigation mathod by syringe. Cell suspension medium were centrifuged at 1500 rpm for 5 min and then cultured in the petri dish. Two kinds of cell were freezed and stocked in the liquid nitrogen tank until experiment. Cell were incubated into the 24 multi-well plate with $5{\times}10^4$cell/well of medium at $37^{\circ}C$, 100% of humidity 5% $CO_2$ incubator for 24 hours. After discarded of the supernatent of medium, O.5ml of medium were reapplied and incubated. And counted the number of cell using the hemocytometer and inverted light microscope. We have measured the number of mineralized nodule with using Alizarin red S. staining in microscope. Furthermore every cell were observed the morphological change between every rate of co-culture of the two kinds of cell. The results were as follows; The rate of proliferation of co-culture cell revealed high rate tendency compared the bone marrow stromal cell only and low growth rate to compared with gingival fibroblast only. The tendency of formation of the mineralized nodule were observed dose-depend pattern of bone marrow stromal cell. It is concluded that the gingival fibroblast may inhibit the formation of mineralized nodule in the culture of the bone marrow stromal cell.

  • PDF

Biological effects of a root conditioning agent for dentin surface modification in vitro

  • Lee, Jue-Yeon;Seol, Yang-Jo;Park, Jang-Ryul;Park, Yoon-Jeong;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.6
    • /
    • pp.257-264
    • /
    • 2010
  • Purpose: Connective tissue reattachment to periodontally damaged root surfaces is one of the most important goals of periodontal therapy. The aim of this study was to develop a root conditioning agent that can demineralize and detoxify the infected root surface. Methods: Dentin slices obtained from human teeth were treated with a novel root planing agent for 2 minutes and then washed with phosphate-buffered saline. Smear layer removal and type I collagen exposure were observed by scanning electron microscopy (SEM) and type I collagen immunostaining, respectively. Cell attachment and lipopolysaccharides (LPS) removal demonstrated the efficiency of the root conditioning agent. Results: SEM revealed that the smear layer was entirely removed and the dentinal tubules were opened by the experimental gel. Type I collagen was exposed on the surfaces of the dentin slices treated by the experimental gel, which were compared with dentin treated with other root planing agents. Dentin slices treated with the experimental gel showed the highest number of attached fibroblasts and flattened cell morphology. The agar diffusion assay demonstrated that the experimental gel also has effective antimicrobial activity. Escherichia coli LPS were effectively removed from well plates by the experimental gel. Conclusions: These results demonstrated that this experimental gel is a useful tool for root conditioning of infected root surfaces and can also be applied for detoxification of ailing implant surface threads.

Differential Effects between Cigarette Total Particulate Matter and Cigarette Smoke Extract on Blood and Blood Vessel

  • Park, Jung-Min;Chang, Kyung-Hwa;Park, Kwang-Hoon;Choi, Seong-Jin;Lee, Kyuhong;Lee, Jin-Yong;Satoh, Masahiko;Song, Seong-Yu;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.32 no.4
    • /
    • pp.353-358
    • /
    • 2016
  • The generation and collection of cigarette smoke (CS) is a prerequisite for any toxicology study on smoking, especially an in vitro CS exposure study. In this study, the effects on blood and vascular function were tested with two widely used CS preparations to compare the biological effects of CS with respect to the CS preparation used. CS was prepared in the form of total particulate matter (TPM), which is CS trapped in a Cambridge filter pad, and cigarette smoke extract (CSE), which is CS trapped in phosphate-buffered saline. TPM potentiated platelet reactivity to thrombin and thus increased aggregation at a concentration of $25{\sim}100{\mu}g/mL$, whereas 2.5~10% CSE decreased platelet aggregation by thrombin. Both TPM and CSE inhibited vascular contraction by phenylephrine at $50{\sim}100{\mu}g/mL$ and 10%, respectively. TPM inhibited acetylcholine-induced vasorelaxation at $10{\sim}100{\mu}g/mL$, but CSE exhibited a minimal effect on relaxation at the concentration that affects vasoconstriction. Neither TPM nor CSE induced hemolysis of erythrocytes or influenced plasma coagulation, as assessed by prothrombin time (PT) and activated partial thromboplastin time (aPTT). Taken together, CS affects platelet activity and deteriorates vasomotor functions in vitro. However, the effect on blood and blood vessels may vary depending on the CS preparation. Therefore, the results of experiments conducted with CS preparations should be interpreted with caution.

Effect of Surfactants on the Controlled Release of Bupivacaine HCl from Biodegradable Microfluidic Devices (생분해성 마이크로 유체 약물전달장치의 Bupivacaine HCl 전달특성에 대한 계면활성제의 영향)

  • Yang, Sung-Yeun;Lee, Kang-Ju;Ryu, Won-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.545-551
    • /
    • 2012
  • We investigated the diffusive transport of bupivacaine HCl through the microchannels of microfluidic drug delivery devices. In the biodegradable microfluidic drug delivery devices developed in this research, the drug release rate can be controlled by simply modulating the geometrical parameters of the microchannels, such as the length, number, and cross-sectional area of the microchannels, when the microchannels are used as paths for drug release. However, the hydrophobic nature of a biodegradable polymer, 85/15 poly(lactic-co-glycolic acid), hinders the infiltration of a release medium (phosphate-buffered saline) through the microchannels into the reservoir of a device that contains bupivacaine HCl, at the early stage of drug release. This can have an adverse effect on the early stage release of local analgesic compounds from the device. In this study, microfluidic channels were surface-treated with surfactants such as PEG600 and Tween80, and the effects of the surfactants on the release performance are presented and analyzed.

Selective iNOS Inhibition Attenuates Skeletal Muscle Reperfusion Injury (선택적 iNOS 억제에 의한 골격근 재관류 손상의 감소)

  • Park, Jong-Woong;Lee, Kwang-Suk;Kim, Sung-Kon;Park, Jung-Ho;Wang, Joon-Ho;Jeon, Woo-Joo;Lee, Jeong-Il
    • Archives of Reconstructive Microsurgery
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • The purpose of this study is to determine the effects of selective inducible nitric oxide synthase (iNOS) inhibitor N-[3-aminomethyl]benzyl]acetamidine (l400W) on the reperfused cremaster muscle. The extracellular superoxide dismutase knockout ($EC-SOD^{-/-}$) mice was used to make the experimental window for ischemia-reperfusion injury. The muscle was exposed to 4.5 h of ischemia followed by 90 min of reperfusion and the mice received either 3 mg/kg of 1400W or the same amount of phosphate buffered saline (PBS) subcutaneously at 10 min before the start of reperfusion. The results showed that 1400W treatment markedly improved the recovery of the vessel diameter and blood flow in the reperfused cremaster muscle compared to that of PBS group. Histological examination showed reduced edema in the interstitium and muscle fiber, and reduced nitrotyrosine formation (a marker of total peroxinitrite ($ONOO^-$) in 1400W-treated muscle compared to PBS. Our results suggest that iNOS and $ONOO^-$ products are involved in skeletal muscle I/R injury. Reduced I/R injury by using selective inhibition of iNOS is perhaps via limiting cytotoxic $ONOO^-$ generation, a reaction product of nitric oxide (NO) and superoxide anion ($O_2^-$). Thus, inhibition of iNOS appears to be a good treatment strategy in reducing clinical I/R injury.

  • PDF

The Effects of Human Adipose Tissue-derived Stem Cells on Degenerative Change of Knee in Rabbit Model (가토 모델에서 인체지방유래 줄기세포가 슬관절의 퇴행성 변화에 미치는 영향)

  • Jeong, Ki-Hwan;Kim, Seok-Kwun;Jeong, Jae-Oo;Heo, Jeong;Kwon, Yong-Seok;Lee, Keun-Cheol
    • Archives of Plastic Surgery
    • /
    • v.35 no.6
    • /
    • pp.637-644
    • /
    • 2008
  • Purpose: The survival of bone marrow derived stem cell was reported several times. But the survival of adipose tissue derived stem cells(hASCs) was not mentioned on. We studied the adipose tissue derived stem cell's survival and effect on articular cartilage in rabbits. Methods: Osteoarthritis was induced in twenty New Zealand white rabbits by intraarticular injection of monosodium iodoacetate(MIA). After four weeks, hASCs were also injected into the knee joints space without any vehicle, but the control group received phosphate buffered saline only. The histologic grade of articular cartilage was measured in 4 and 8 weeks after the transplantation of hASC and the viability of injected stem cells measured by Fluorescent in situ Hybridization (FISH) examination. Results: After 4 and 8 weeks from hASCs transplantation, histologic grade was not significantly difference between two groups(p>0.05), and the Y chromosome of the transplanted hASCs was not detected in articular cartilage. Conclusion: We found that direct injection of hASC in joint space didn't work on damaged articular cartilage repair.

Effects of Human Adipose-Derived Stem Cells on the Survival of Rabbit Ear Composite Grafts

  • Kim, Chae Min;Oh, Joo Hyun;Jeon, Yeo Reum;Kang, Eun Hye;Lew, Dae Hyun
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.370-377
    • /
    • 2017
  • Background Composite grafts are frequently used for facial reconstruction. However, the unpredictability of the results and difficulties with large defects are disadvantages. Adipose-derived stem cells (ADSCs) express several cytokines, and increase the survival of random flaps and fat grafts owing to their angiogenic potential. Methods This study investigated composite graft survival after ADSC injection. Circular chondrocutaneous composite tissues, 2 cm in diameter, from 15 New Zealand white rabbits were used. Thirty ears were randomly divided into 3 groups. In the experimental groups (1 and 2), ADSCs were subcutaneously injected 7 days and immediately before the operation, respectively. Similarly, phosphate-buffered saline was injected in the control group just before surgery in the same manner as in group 2. In all groups, chondrocutaneous composite tissue was elevated, rotated 90 degrees, and repaired in its original position. Skin flow was assessed using laser Doppler 1, 3, 6, 9, and 12 days after surgery. At 1 and 12 days after surgery, the viable area was assessed using digital photography; the rabbits were euthanized, and immunohistochemical staining for CD31 was performed to assess neovascularization. Results The survival of composite grafts increased significantly with the injection of ADSCs (P<0.05). ADSC injection significantly improved neovascularization based on anti-CD31 immunohistochemical analysis and vascular endothelial growth factor expression (P<0.05) in both group 1 and group 2 compared to the control group. No statistically significant differences in graft survival, anti-CD31 neovascularization, or microcirculation were found between groups 1 and 2. Conclusions Treatment with ADSCs improved the composite graft survival, as confirmed by the survival area and histological evaluation. The differences according to the injection timing were not significant.

Targeting EGFL7 Expression through RNA Interference Suppresses Renal Cell Carcinoma Growth by Inhibiting Angiogenesis

  • Xu, Han-Feng;Chen, Lei;Liu, Xian-Dong;Zhan, Yun-Hong;Zhang, Hui-Hui;Li, Qing;Wu, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3045-3050
    • /
    • 2014
  • Renal cell carcinoma (RCC) is the most lethal of all urological cancers and tumor angiogenesis is closely related with its growth, invasion, and metastasis. Recent studies have suggested that epidermal growth factor-like domain multiple 7 (EGFL7) is overexpressed by many tumors, such as colorectal cancer and hepatocellular carcinoma; it is also correlated with progression, metastasis, and a poor prognosis. However, the role of EGFL7 in RCC is not clear. In this study, we examined how EGFL7 contributes to the growth of RCC using a co-culture system in vitro and a xenograft model in vivo. Downregulated EGFL7 expression in RCC cells affected the migration and tubule formation of HMEC-1 cells, but not their growth and apoptosis in vitro. The level of focal adhesion kinase (FAK) phosphorylation in HMEC-1 cells decreased significantly when co-cultured with 786-0/iEGFL7 cells compared with 786-0 cells. After adding rhEGFL7, the level of FAK phosphorylation in HMEC-1 cells was significantly elevated compared with phosphate-buffered saline (PBS) control. However, FAK phosphorylation was abrogated by EGFR inhibition. The average size of RCC local tumors in the 786-0/iEGFL7 group was noticeably smaller than those in the 786-0 cell group and their vascular density was also significantly decreased. These data suggest that EGFL7 has an important function in the growth of RCC by facilitating angiogenesis.