• Title/Summary/Keyword: phosphate solubilizing

Search Result 105, Processing Time 0.026 seconds

Improvement of Functional Properties of Ovotransferrin by Phosphorylation through Dry-heating in the Presence of Pyrophosphate

  • Hayashi, Yoko;Li, Can-Peng;Enomoto, Hirofumi;Ibrahim, Hisham R.;Sugimoto, Yasushi;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.596-602
    • /
    • 2008
  • Ovotransferrin (OTf) was phosphorylated by dry-heating in the presence of pyrophosphate at pH 4.0 and $85^{\circ}C$ for 1 and 5 d, and the functional properties of phosphorylated OTf (PP-OTf) were investigated. The phosphorus content of OTf increased to 0.91% as a result of phosphorylation and the electrophoretic mobility of PP-OTf also increased. Although the solubility of dry-heated OTf slightly decreased, the decrease was reduced by phosphorylation. The stability against heat-induced insolubilization of OTf was somewhat improved by phosphorylation, but more than 70% of PP-OTf was insolubilized when it was heated at $70^{\circ}C$ for 10 min at pH 7.0. However, heat-induced insolubilization of PP-OTf was reduced when it was heated in the presence of phosphorylated ovalbumin. This may explain the excellent stability of phosphorylated egg white protein against heat-induced insolubilization which was reported previously. The emulsifying property of OTf was also somewhat improved by phosphorylation. The calcium phosphate-solubilizing ability of PP-OTf was enhanced. Although the degree of phosphorylation of OTf by dry-heating in the presence of pyrophosphate was similar to that of ovalbumin, the improvement of properties of PP-OTf was considerably different from those of phosphorylated ovalbumin.

Biological Control of Bacterial Fruit Blotch of Watermelon Pathogen (Acidovorax citrulli) with Rhizosphere Associated Bacteria

  • Adhikari, Mahesh;Yadav, Dil Raj;Kim, Sang Woo;Um, Young Hyun;Kim, Hyun Seung;Lee, Seong Chan;Song, Jeong Young;Kim, Hong Gi;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.170-183
    • /
    • 2017
  • Bacterial fruit blotch (BFB), which is caused by Acidovorax citrulli, is a serious threat to watermelon growers around the world. The present study was conducted to screen effective rhizobacterial isolates against 35 different A. citrulli isolates and determine their efficacy on BFB and growth parameters of watermelon. Two rhizobacterial isolates viz. Paenibacillus polymyxa (SN-22), Sinomonas atrocyanea (NSB-27) showed high inhibitory activity in the preliminary screening and were further evaluated for their effect on BFB and growth parameters of three different watermelon varieties under greenhouse conditions. The greenhouse experiment result revealed that SN-22 and NSB-27 significantly reduced BFB and had significant stimulatory effect on total chlorophyll content, plant height, total fresh weight and total dry weight compared to uninoculated plants across the tested three watermelon varieties. Analysis of the 16S ribosomal RNA (rRNA) sequences revealed that strains SN-22 belong to P. polymyxa and NSB-27 to S. atrocyanea with the bootstrap value of 99% and 98%, respectively. The isolates SN-22 and NSB-27 were tested for antagonistic and PGP traits. The result showed that the tested isolates produced siderophore, hydrolytic enzymes (protease and cellulose), chitinase, starch hydrolytic enzymes and they showed phosphate as well as zinc solubilizing capacity. This is the first report of P. polymyxa (SN-22) and S. atrocyanea (NSB-27) as biocontrol-plant growth promoting rhizobacteria on watermelon.

Plant Growth Promotion by Isolated Strain of Bacillus subtilis for Revegetation of Barren Lakeside Area (호안나대지 식생복원을 위한 Bacillus subtilis 분리균주의 식물생장 촉진능)

  • Kim, Kyung-Mi;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.33-37
    • /
    • 2010
  • Rhizobacterial strain isolated from barren soil, Bacillus subtilis RFO41 exhibits a high level of phosphate solubilizing activity and produces some phytohormones. Its promoting effect on the growth of Xanthium italicum Moore, a wild plant growing at lakeside barren land and thus a good candidate plant for revegetation of barren lakeside was evaluated in the in situ test for 19 weeks at Lake Paro, Kangwon-do. Strain RFO41 could enhance the dry weight of X. italicum by 67.7%. It also increased the shoot length of X. italicum plant by 21.1% compared to that of uninoculated control. Both growth enhancements had statistical significance. However, the inoculation did not show any effect on the root growth, which might be due to the breakage of tiny root. Denaturing gradient gel electrophoresis analysis showed that the inoculated bacteria were maintained in the soils, and the indigenous bacterial community did not exhibit any significant change. This plant growth promoting capability may be utilized as an environment-friendly and low cost revegetation method, especially for the sensitive areas such as barren lakeside lands.

Improvement of Functional Properties of Egg White Protein through Glycation and Phosphorylation by Dry-heating

  • Enomoto, Hirofumi;Nagae, Shiho;Hayashi, Yoko;Li, Can-Peng;Ibrahim, Hisham R.;Sugimoto, Yasushi;Aoki, Takayoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.591-597
    • /
    • 2009
  • Egg white protein (EWP) was glycated with maltopentaose (MP) through the Maillard reaction and subsequently phosphorylated by $85^{\circ}C$ dry-heating at pH 4.0 for 1 d in the presence of pyrophosphate. The functional properties of glycated, phosphorylated EWP were compared with those of native EWP and with EWP which was phosphorylated by dry-heating in the presence of pyrophosphate under the same conditions. The phosphorus content of EWP was increased to ~0.60% by phosphorylation, and to ~0.74% by glycation with MP and subsequent phosphorylation. The electrophoretic mobility of EWP increased through phosphorylation. The stability of EWP against heat-induced insolubility at pH 7.0 was considerably improved by phosphorylation alone and further by phosphorylation after glycation. The anti-ovalbumin antibody response was reduced significantly by glycation and phosphorylation, and further reduced by phosphorylation after glycation. The anti-ovomucoid antibody response was reduced significantly by glycation, phosphorylation and phosphorylation after glycation. The calcium phosphate-solubilizing ability of EWP was enhanced by both phosphorylation methods.

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent (잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성)

  • Choi, Seunghoon;Yoo, Ji-Yeon;Park, SungJin;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.925-933
    • /
    • 2020
  • To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

A Study on the Application of Enhanced Phytoremediation with Plant Growth Promoting Rhizobacteria for Zn Contaminated Rice Paddy Soil (식물성장근권 미생물 적용에 의한 Zn 오염 논토양 식물상정화증진기법 적용에 관한 연구)

  • Kim, Tae-Sung;Choi, Sang-Il;Yang, Jae-Kyu;Lee, In-Sook;Bae, Bum-Han
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.15-26
    • /
    • 2010
  • The contaminated soils near abandoned mine area can threaten human's health and natural ecosystems through multiple pathways. Remediation of contaminated soil using physicochemical technologies are expensive and destructive of soil environments. On the other hand, environmentally friendly approach that maximize biological remediation, that is, phytoremediation, attracts attention as a low carbon green growth technology. This research is a field demonstration study, focused on the enhanced phytoremediation by bioaugmenting PGPR(Plant Growth Promoting Rhizobacteria)that is helpful on the growth of and heavy metal removal by Echinochloa frumentacea, at a Zn contaminated paddy soil near SamBo mine at Hwasung, Kyunggi. The results showed that the zinc removal by the plant with PSM(Phosphate Solubilizing Bacteria), a kind of PGPR, was three times higher than that by the control. The results are valuable as it is a result from the field-scale technology demonstration. The results also implies that application of PGPR can enhance heavy metal removal from contaminated soil in full scale phytoremediation using Echinochloa frumentacea.

Skin Penetration and Localization Characteristics of Lipogel Containing Ascorbyl Palmitate (아스코르빈산 팔미테이트를 함유한 리포겔의 피부 투과 및 잔류 특성)

  • Lee, Sang-Kil;Woo, Hye-Seoung;Lee, Yeon-Ah;Kwon, Yong-Nam;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.225-232
    • /
    • 2001
  • The present study was carried out to observe the effect of liposome dispersed gel formulation (Lipogel) on topical delivery of ascorbyl palmitate (AsP). Neutral and negatively charged MLV liposomes containing AsP were prepared with dimyristoylphosphadtidylcholine (DMPC) and dicetyl phosphate (DCP), and dispersed to poloxamer gel matrix. In the hydrolysis study in rat's skin homogenates, AsP hydrolyzed to ascorbic acid (AsA) according to the first-order kinetics with the rate constant of $2.46{\times}10^{-2}\;min^{-1}$. In the passive skin penetration study using Franz diffusion cell, lipogel systems exhibited the greater values in the flux $(J_s)$ and the amount penetrated $(Q_p)$ compared to control hydrogels containing diethyleneglycol monoethyl ether $(Transcutol^{\circledR})$ as a solubilizing agent and a penetration enhancer for AsP. The total amount penetrated $(Q_{Total})$, which is expressed as a summation of $Q_P\;and\;Q_L$, for lipogel system was about 1.4 times higher in average than that of control hydrogel. However the amount localized in the skin $(Q_L)$ was similar in both formulations. As a result, lipogel system enhanced the skin penetration of AsP, possibly due to the increase in local concentration of AsP by preferential adsorption of liposome to the skin and the enhancing effect of phospholipid in liposome composition. Moreover it was expected that the penetrated AsP would generate AsA during skin penetration by the skin esterase. In conclusion, lipogel formulation was considered as a good candidate for topical delivery of AsP.

  • PDF

Production of Protein Hydrolyzate, that can be used as Food Additives, from Okara (산업폐기물인 비지로부터 식품첨가물로 이용할 수 있는 단백질 가수분해물의 생산)

  • Woo, Eun-Yeol;Kim, Min-Jung;Shin, Weon-Sun;Lee, Kyung-Ae;Kim, Kang-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.769-773
    • /
    • 2001
  • Protein content of okara and soybean were found to be 37.3% and 42.5%, respectively by micro-Kjeldahl analysis. Solubility of okara protein in phosphate buffer (pH 8) was 10% versus soy protein of 68.4%. Insolubilization of okara protein was mostly due to disulfide bonding between cysteine residues caused by excessive heat treatment during soymilk processing: hydrophobic interactions and hydrogen bondings were involved to lesser extent. Optimum extraction temperature and time were $60^{\circ}C$ and 40 min. Typical solubility profile of soy protein disappeared for okara protein though minimum solubility of the protein was around pH 3.0. Treating okara with protease was effective in solubilizing okara protein and solubility increased to 19.2%. Optimum reaction temperature and time were $80^{\circ}C$ and 50 min, respectively. Cell wall degrading enzyme did not increase solubility of the protein, however. Through enzymatic reaction okara protein could be effectively solubilized for uses as food ingredient.

  • PDF

Genetic and Phenotypic Diversity of Plant Growth Promoting Rhizobacteria Isolated from Sugarcane Plants Growing in Pakistan

  • Mehnaz, Samina;Baig, Deeba N.;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1614-1623
    • /
    • 2010
  • Bacteria were isolated from roots of sugarcane varieties grown in the fields of Punjab. They were identified by using API20E/NE bacterial identification kits and from sequences of 16S rRNA and amplicons of the cpn60 gene. The majority of bacteria were found to belong to the genera of Enterobacter, Pseudomonas, and Klebsiella, but members of genera Azospirillum, Rhizobium, Rahnella, Delftia, Caulobacter, Pannonibacter, Xanthomonas, and Stenotrophomonas were also found. The community, however, was dominated by members of the Pseudomonadaceae and Enterobacteriaceae, as representatives of these genera were found in samples from every variety and location examined. All isolates were tested for the presence of five enzymes and seven factors known to be associated with plant growth promotion. Ten isolates showed lipase activity and eight were positive for protease activity. Cellulase, chitinase, and pectinase were not detected in any strain. Nine strains showed nitrogen fixing ability (acetylene reduction assay) and 26 were capable of solubilizing phosphate. In the presence of 100 mg/l tryptophan, all strains except one produced indole acetic acid in the growth medium. All isolates were positive for ACC deaminase activity. Six strains produced homoserine lactones and three produced HCN and hexamate type siderophores. One isolate was capable of inhibiting the growth of 24 pathogenic fungal strains of Colletotrichum, Fusarium, Pythium, and Rhizoctonia spp. In tests of their abilities to grow under a range of temperature, pH, and NaCl concentrations, all isolates grew well on plates with 3% NaCl and most of them grew well at 4 to $41^{\circ}C$ and at pH 11.

Biological Control of Fusarium oxysporum, the Causal Agent of Fusarium Basal Rot in Onion by Bacillus spp.

  • Jong-Hwan Shin;Ha-Kyoung Lee;Seong-Chan Lee;You-Kyoung Han
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.600-613
    • /
    • 2023
  • Fusarium oxysporum is the main pathogen causing Fusarium basal rot in onion (Allium cepa L.), which incurs significant yield losses before and after harvest. Among management strategies, biological control is an environmentally safe and sustainable alternative to chemical control. In this study, we isolated and screened bacteria for antifungal activity against the basal rot pathogen F. oxysporum. Isolates 23-045, 23-046, 23-052, 23-055, and 23-056 significantly inhibited F. oxysporum mycelial growth and conidial germination. Isolates 23-045, 23-046, 23-052, and 23-056 suppressed the development of Fusarium basal rot in both onion seedlings and bulbs in pot and spray inoculation assays. Isolate 23-055 was effective in onion seedlings but exhibited weak inhibitory effect on onion bulbs. Based on analyses of the 16S rRNA and rpoB gene sequences together with morphological analysis, isolates 23-045, 23-046, 23-052, and 23-055 were identified as Bacillus thuringiensis, and isolate 23-056 as Bacillus toyonensis. All five bacterial isolates exhibited cellulolytic, proteolytic, and phosphate-solubilizing activity, which may contribute to their antagonistic activity against onion basal rot disease. Taken together B. thuringiensis 23-045, 23-046, 23-052, and 23-055 and B. toyonensis 23-056 have potential for the biological control of Fusarium basal rot in onion.