• Title/Summary/Keyword: phosphatase tensin homolog

Search Result 24, Processing Time 0.02 seconds

Phosphoinositide turnover in Toll-like receptor signaling and trafficking

  • Le, Oanh Thi Tu;Nguyen, Tu Thi Ngoc;Lee, Sang Yoon
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.361-368
    • /
    • 2014
  • Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking.

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

  • Kundu, Juthika;Chae, In Gyeong;Chun, Kyung-Soo
    • Journal of Cancer Prevention
    • /
    • v.21 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Background: Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods: Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results: Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase $(AMPK){\alpha}$ and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and $AMPK{\alpha}$ abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions: Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or $AMPK{\alpha}/Nrf2$ pathway in HaCaT cells.

Primordial follicle activation as new treatment for primary ovarian insufficiency

  • Lee, Hye Nam;Chang, Eun Mi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.46 no.2
    • /
    • pp.43-49
    • /
    • 2019
  • Primordial follicle activation is a process in which individual primordial follicles leave their dormant state and enter a growth phase. While existing hormone stimulation strategies targeted the growing follicles, the remaining dormant primordial follicles were ruled out from clinical use. Recently, in vitro activation (IVA), which is a method for controlling primordial follicle activation, has provided an innovative technology for primary ovarian insufficiency (POI) patients. IVA was developed based on Hippo signaling and phosphatase and tensin homolog (PTEN)/phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/forkhead box O3 (FOXO3) signaling modulation. With this method, dormant primordial follicles are activated to enter growth phase and developed into competent oocytes. IVA has been successfully applied in POI patients who only have a few remaining remnant primordial follicles in the ovary, and healthy pregnancies and deliveries have been reported. IVA may also provide a promising option for fertility preservation in cancer patients and prepubertal girls whose fertility preservation choices are limited to tissue cryopreservation. Here, we review the basic mechanisms, translational studies, and current clinical results for IVA. Limitations and further study requirements that could potentially optimize IVA for future use will also be discussed.

Novel Genetic Associations Between Lung Cancer and Indoor Radon Exposure

  • Choi, Jung Ran;Koh, Sang-Baek;Park, Seong Yong;Kim, Hye Run;Lee, Hyojin;Kang, Dae Ryong
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.234-240
    • /
    • 2017
  • Background: Lung cancer is the leading cause of cancer-related death worldwide, for which smoking is considered as the primary risk factor. The present study was conducted to determine whether genetic alterations induced by radon exposure are associated with the susceptible risk of lung cancer in never smokers. Methods: To accurately identify mutations within individual tumors, next generation sequencing was conduct for 19 pairs of lung cancer tissue. The associations of germline and somatic variations with radon exposure were visualized using OncoPrint and heatmap graphs. Bioinformatic analysis was performed using various tools. Results: Alterations in several genes were implicated in lung cancer resulting from exposure to radon indoors, namely those in epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), NK2 homeobox 1 (NKX2.1), phosphatase and tensin homolog (PTEN), chromodomain helicase DNA binding protein 7 (CHD7), discoidin domain receptor tyrosine kinase 2 (DDR2), lysine methyltransferase 2C (MLL3), chromodomain helicase DNA binding protein 5 (CHD5), FAT atypical cadherin 1 (FAT1), and dual specificity phosphatase 27 (putative) (DUSP27). Conclusions: While these genes might regulate the carcinogenic pathways of radioactivity, further analysis is needed to determine whether the genes are indeed completely responsible for causing lung cancer in never smokers exposed to residential radon.

Conditional PTEN-deficient Mice as a Prostate Cancer Chemoprevention Model

  • Koike, Hiroyuki;Nozawa, Masahiro;De Velasco, Marco A;Kura, Yurie;Ando, Naomi;Fukushima, Emiko;Yamamoto, Yutaka;Hatanaka, Yuji;Yoshikawa, Kazuhiro;Nishio, Kazuto;Uemura, Hirotsugu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1827-1831
    • /
    • 2015
  • Background: We generated a mouse model of prostate cancer based on the adult-prostate-specific inactivation of phosphatase and tensin homolog (PTEN) using the Cre-loxP system. The potential of our mice as a useful animal model was examined by evaluating the chemopreventive efficacy of the anti-androgen, chlormadinone acetate (CMA). Materials and Methods: Six-week-old mice were treated subcutaneously with $50{\mu}g/g$ of CMA three times a week for 9 or 14 weeks and sacrificed at weeks 15 and 20. Macroscopic change of the entire genitourinary tract (GUT) and histologically evident prostate gland tumor development were evaluated. Proliferation and apoptosis status in the prostate were examined by immunohistochemistry. Results: CMA triggered significant shrinkage of not only the GUT but also prostate glands at 15 weeks compared to the control (p=0.017 and p=0.010, respectively), and the trend became more marked after a further five-weeks of treatment. The onset of prostate adenocarcinoma was not prevented but the proliferation of cancer cells was inhibited by CMA, which suggested the androgen axis is critical for cancer growth in these mice. Conclusions: Conditional PTEN-deficient mice are useful as a preclinical model for chemoprevention studies and serve as a valuable tool for the future screening of potential chemopreventive agents.

15-Hydroxyeicosatetraenoic Acid Inhibits Phorbol-12-Myristate-13-Acetate-Induced MUC5AC Expression in NCI-H292 Respiratory Epithelial Cells

  • Song, Yong-Seok;Kim, Man Sub;Lee, Dong Hun;Oh, Doek-Kun;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.589-597
    • /
    • 2015
  • It has been reported that overexpression of MUC5AC induced by excessive inflammation leads to airway obstruction in respiratory diseases such as chronic obstructive pulmonary disease and asthma. 15-Hydroxyeicosatetraenoic acid (15-HETE) has been reported to have anti-inflammatory effects, but the role of 15-HETE in respiratory inflammation has not been determined. Therefore, the aim of this study was to investigate the effects of 15-HETE on MUC5AC expression and related pathways. In this study, phorbol-12-myristate-13-acetate (PMA) was used to stimulate NCI-H292 bronchial epithelial cells in order to examine the effects of 15-HETE. 15-HETE inhibited PMA-induced expression of MUC5AC mRNA and secretion of MUC5AC protein. Moreover, 15-HETE regulated matrix metallopeptidase 9 (MMP-9), mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK). In addition, 15-HETE decreased the nuclear translocation of specificity protein-1 (Sp-1) transcription factor and nuclear factor κB (NF-κB). Furthermore, 15-HETE enhanced the transcriptional activity of peroxisome proliferator-activated receptor gamma (PPARγ) as a PPARγ agonist. This activity reduced the phosphorylation of protein kinase B (PΚB/Akt) by increasing the expression of phosphatase and tensin homolog (PTEN). In conclusion, 15-HETE regulated MUC5AC expression via modulating MMP-9, MEK/ERK/Sp-1, and PPARγ/PTEN/Akt signaling pathways in PMA-treated respiratory epithelial cells.

4-Hydroxynonenal Promotes Growth and Angiogenesis of Breast Cancer Cells through HIF-1α Stabilization

  • Li, Yao-Ping;Tian, Fu-Guo;Shi, Peng-Cheng;Guo, Ling-Yun;Wu, Hai-Ming;Chen, Run-Qi;Xue, Jin-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10151-10156
    • /
    • 2015
  • 4-Hydroxynonenal (4-HNE) is a stable end product of lipid peroxidation, which has been shown to play an important role in cell signal transduction, while increasing cell growth and differentiation. 4-HNE could inhibit phosphatase and tensin homolog (PTEN) activity in hepatocytes and increased levels have been found in human invasive breast cancer. Here we report that 4-HNE increased the cell growth of breast cancer cells as revealed by colony formation assay. Moreover, vascular endothelial growth factor (VEGF) expression was elevated, while protein levels of hypoxia inducible factor 1 alpha (HIF-$1{\alpha}$) were up-regulated. Sirtuin-3 (SIRT3), a major mitochondria NAD+-dependent deacetylase, is reported to destabilize HIF-$1{\alpha}$. Here, 4-HNE could inhibit the deacetylase activity of SIRT3 by thiol-specific modification. We further demonstrated that the regulation by 4-HNE of levels of HIF-$1{\alpha}$ and VEGF depends on SIRT3. Consistent with this, 4-HNE could not increase the cell growth in SIRT3 knockdown breast cancer cells. Additionally, 4-HNE promoted angiogenesis and invasion of breast cancer cells in a SIRT3-dependent manner. In conclusion, we propose that 4-HNE promotes growth, invasion and angiogenesis of breast cancer cells through the SIRT3-HIF-$1{\alpha}$-VEGF axis.

Loss of Expression of PTEN is Associated with Worse Prognosis in Patients with Cancer

  • Qiu, Zhi-Xin;Zhao, Shuang;Li, Lei;Li, Wei-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4691-4698
    • /
    • 2015
  • Background: The tumor suppressor phosphatase and tensin homolog (PTEN) is an important negative regulator of cell-survival signaling. However, available results for the prognostic value of PTEN expression in patients with cancer remain controversial. Therefore, a meta-analysis of published studies investigating this issue was performed. Materials and Methods: A literature search via PubMed and EMBASE databases was conducted. Statistical analysis was performed by using the STATA 12.0 (STATA Corp., College, TX). Data from eligible studies were extracted and included into the meta-analysis using a random effects model. Results: A total of 3,810 patients from 27 studies were included in the meta-analysis, 22 investigating the relationship between PTEN expression and overall survival (OS) using univariate analysis, and nine with multivariate analysis. The pooled hazard ratio (HR) for OS was 1.64 (95% confidence interval (CI): 1.32-2.05) by univariate analysis and 1.56 (95% CI: 1.20-2.03) by multivariate analysis. In addition, eight papers including two disease-free-survival analyses (DFSs), four relapse-free-survival analyses (RFSs), three progression-free-survival analyses (PFSs) and one metastasis-free-survival analysis (MFS) reported the effect of PTEN on survival. The results showed that loss of PTEN expression was significant correlated with poor prognosis, with a combined HR of 1.74 (95% CI: 1.24-2.44). Furthermore, in the stratified analysis by the year of publication, ethnicity, cancer type, method, cut-off value, median follow-up time and neoadjuvant therapy in which the study was conducted, we found that the ethnicity, cancer type, method, median follow-up time and neoadjuvant therapy are associated with prognosis. Conclusions: Our study shows that negative or loss of expression of PTEN is associated with worse prognosis in patients with cancer. However, adequately designed prospective studies need to be performed for confirmation.

Cancer stem cell theory and update in oral squamous cell carcinoma (구강 편평세포암종에서의 암줄기세포 이론과 최신 지견)

  • Kim, Deok-Hun;Yun, Jun-Yong;Lee, Ju-Hyun;Kim, Soung-Min;Myoung, Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.2
    • /
    • pp.97-108
    • /
    • 2011
  • Cancer stem cells have stem cell-like features, such as the ability for self-renewal and differentiation but show unlimited growth because they have the lost normal regulation of cell growth. Cancer stem cells and normal stem cells have similar features. They show high motility, diversity of progeny, robust proliferative potential, association with blood vessels, immature expression profiles, nestin expression, epidermal growth factor (EGF)-receptor expression, phosphatase and tensin homolog (PTEN) expression, hedgehog pathway activity, telomerase activity, and Wnt pathway activity. On the other hand, with cancer cells, some of these signaling pathways are abnormally modified. In 1875, Cohnheim suggested the concept of cancer stem cells. Recently, evidence for the existence of cancer stem cells was identified. In 1994, the cancer stem cells' specific cell surface marker for leukemia was identified. Since then, other specific cell surface markers for cancer stem cells in solid tumors (e.g. breast and colon cancer) have been identified. In oral cancer, studies on cancer stem cells have been performed mainly with squamous cell carcinomas. Oral cancer specific cell surface markers, which are genes strongly expressed in oral cancer and cancer stem cell specific side populations, have been identified. Cancer stem cells are resistant to radiotherapy and chemotherapy. Therefore, to eliminate malignant tumors efficiently and reduce the recurrence rate, therapy targeting cancer stem cells needs to be performed. Currently, studies targeting the cancer stem cells' specific signaling pathways, telomerase and tumor vasculatures are being done.

Bioinformatics Analysis of Autophagy and Mitophagy Markers Associated with Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage

  • Youn, Dong Hyuk;Kim, Bong Jun;Hong, Eun Pyo;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.236-244
    • /
    • 2022
  • Objective : To evaluate the interactions among differentially expressed autophagy and mitophagy markers in subarachnoid hemorrhage (SAH) patients with delayed cerebral ischemia (DCI). Methods : The expression data of autophagy and mitophagy-related makers in the cerebrospinal fluid (CSF) cells was analyzed by real-time reverse transcription-polymerase chain reaction and Western blotting. The markers included death-associated protein kinase (DAPK)-1, BCL2 interacting protein 3 like (BNIP3L), Bcl-1 antagonist X, phosphatase and tensin homolog-induced kinase (PINK), Unc-51 like autophagy activating kinase 1, nuclear dot protein 52, and p62. In silico functional analyses including gene ontology enrichment and the protein-protein interaction network were performed. Results : A total of 56 SAH patients were included and 22 (38.6%) of them experienced DCI. The DCI patients had significantly increased mRNA levels of DAPK1, BNIP3L, and PINK1, and increased expression of BECN1 compared to the non-DCI patients. The most enriched biological process was the positive regulation of autophagy, followed by the response to mitochondrial depolarization. The molecular functions ubiquitin-like protein ligase binding and ubiquitin-protein ligase binding were enriched. In the cluster of cellular components, Lewy bodies and the phagophore assembly site were enriched. BECN1 was the most connected gene among the differentially expressed markers related to autophagy and mitophagy in the development of DCI. Conclusion : Our study may provide novel insight into mitochondrial dysfunction in DCI pathogenesis.