• Title/Summary/Keyword: phenylalanine metabolism

Search Result 47, Processing Time 0.033 seconds

Studies on the Biological and Chemical Properties of Musty Ginseng Root and its Causal Mechanism (적변삼의 생물.화학적 특성과 그 발생원인에 관하여)

  • 정영륜;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 1985
  • Rusty root of ginseng has been known as one of the limiting factors in ginseng production in Korea. An attempt was, therefore, made to elucidate biological and chemical natures of the rusty root, and the redox Potential of the ginseng cultivated soils were measured and compared with diseased and non-diseased soils. Reddish discoloration was most frequently observed on the epidermis of ginseng root and the pigments were accumulated in all epidermal cells of the diseased lesions. The lower the redox potential of the ginseng cultivated soil was, the more severe the rusty root was observed. Fe content in the diseased epidermis was 3 times higher than that of healthy one. Organic acids such as oxalic, malonic, succinic, and citric acids were also higher in the mss root than in the healthy one. Thin layer chromatogram of phenolic acid fractions obtained from the epidermal cells of the rusty root of ginseng exhibited 3 to 4 unidentified substances not found in the healthy root. Also lignification of the epidermal cells and the activity of phenylalanine ammonia lyase were greater in the rusty root than the healthy root. Colony formation and conidia production of F. solani, And mycelial growth and sclerotium formation of Sclerotinia sp. isolated from ginseng root were suppressed in a nutritionally minimal medium supplemented with water extract of rusty ginseng root epidermis. It is, therefore, suggested that rusty root of ginseng is caused by unfavorable rhizosphere environmental stress or stresses resulting abnormal metabolism in the root as a selfdefence mechanism of non-specific resistance responses.

  • PDF

Biochemistry of Salicylic Acid and its Role in Disease Resistance

  • Lee, Hyung-Il;Raskin, Ilya
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.233-238
    • /
    • 1997
  • Salicylic acid (SA) is involved in the establishment of systemic acquired resistance (SAR) in many plant including tobacco. Considering the important role of SA in disease resistance, biosynthetic and metabolic pathways of SA in tobacco have been studied extensively: The initial step for biosynthetic pathway of SA is conversion of phenylalanine to trans-cinnamic acid, followed by decarboxylation of trans-cinnamic acid to benzoic acid and ie subsequent ring hydroxylation at the C-2 position to form SA. In TMV inoculated tobacco, most of the newly synthesized SA is glucosylated or methylated. Methyl salicylate has been identified as a biologically active, volatile signal. In contrast, the two glucosylated forms accumulate in the vicinity of lesions and consist of SA glucoside, a major metabolite, and SA glucose ester, a relatively minor from. Two enzymes involved in SA biosynthesis and metabolism have been purified and characterized : benzoic acid 2-hydroxylase which catalyzes conversion of benzoic acid to SA; UDP-Glucose: SA 1-O-D glucosyltransferase which converts SA to SA glucose ester. Further studies of the biosynthetic and metabolic pathways of SA will help to elucidate the SAR signal transduction pathway and provide potential tools for the manipulation of disease resistance.

  • PDF

Free Amino Acids of Xylem-Pith in Panax ginseng Root. (인삼근동체중심부의 유리아미노산)

  • Lee, Mee-Kyoung;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.32-38
    • /
    • 1987
  • Composition of free amino acids (FAA) in the central part (xylem plus piths,of tap root in P. ginseng was investigated in velation to stem status at harvest. The sum of FAA tended to be higher with dead stem than with healthy one but both were not significantly different. The sum of FAA (3.6-4.9% dried weight) was much less than total FAA, suggesting that water soluble nonprotein fraction contained large quantity of ninhydrih positive components except FAA. Pattern of amino acid composition between both stem status was not different. Ten of all 17 amino acids showed increasing tendency with dead stem and two, glutamic acid and cysteine, decreasing. Major FAA were arginine (relative content 58%), glycine (8.2), lysine (5.9), serine (5.7), glutamic acid (4.2) and aspartic acid (3.5). Above facts strongly suggest that the inside white of red ginseng did not closely related with FAA and that early defoliation or stem death did not decrease FAA. The content of arginine was heighest in all cases reported indicating the important role of nitrogen metabolism. Pattern of PAA composition except arginine was not different in present samples but greatly different with other cases reported mainly due to alanine, phenylalanine, glycine and proline.

  • PDF

Hereditary Tyrosinemia Type I (Hereditary Tyrosinemia Type I 환아의 NTBC 치료 경험)

  • Kang, Hyun-Young;Kim, Sook Za;Song, Wung Joo;Chang, Mi-Young
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.4 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • Hereditary tyrosinemia type I (fiunarylacetoacetate hydrolase deficiency) is an autosomal recessive inborn error of tyrosine metabolism that results in liver failure in infancy or chronic liver disease with cirrhosis, frequently complicated by hepatocellular carcinoma in childhood or early adolescence. Early detection of this condition is very important to early intervention for better prognosis of patients. Neonatal screening test using tandem mass spectrometry (MS-MS) is performed, and this method facilitates detection of the inborn error of tyrosine. For early treatment of tyrosinemia type I, phenylalanine and tyrosine restricted diet and NTBC (2-nitro-4-trifluoromethylbenzoyl-1,3-cyclohexanedione) for inhibition of succinylacetone production are recommended. We studied a 10-month-old Korean boy with tyrosinemia type I whose condition was not discovered earlier through conventional neonatal screening testing available in Korea. The patient presented hyperbilirubinemia, liver failure, bleeding tendency, colicky pain and skin melanin pigmentation in neonatal period. MS-MS made it possible to detect tyrosinemia type I and allowed immediate treatment of the patient. This was the first successful NTBC trial on tyrosinemia type I patient in Korea.

  • PDF

Antiviral Activity of the Exopolysaccharide Produced by Serratia sp. Strain Gsm01 Against Cucumber Mosaic Virus

  • Ipper, Nagesh S.;Cho, Sae-Youll;Lee, Seon-Hwa;Cho, Jun-Mo;Hur, Jang-Hyun;Lim, Chun-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • The potential of the exopolysaccharide (EPS) from a Serratia sp. strain Gsm01 as an antiviral agent against a yellow strain of Cucumber mosaic virus (CMV-Y) was evaluated in tobacco plants (Nicotiana tabacum cv. Xanthi-nc). The spray treatment of plants using an EPS preparation, 72h before CMV-Y inoculation, protected them against symptom appearance. Fifteen days after challenge inoculation with CMV-Y, 33.33% of plants showed mosaic symptoms in EPS-treated plants compared with 100% in the control plants. The EPS-treated plants, which showed mosaic symptoms, appeared three days later than the controls. The enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR) analyses of the leaves of the protected plants revealed that the EPS treatment affected virus accumulation in those plants. Analysis of phenylalanine ammonia lyase, peroxidase, and phenols in protected plants revealed enhanced accumulation of these substances. The pathogenesis-related (PR) genes expression represented by PR-lb was increased in EPS-treated plants. This is the first report of a systemic induction of protection triggered by EPS produced by Serratia sp. against CMV-Y.

Global prevalence of classic phenylketonuria based on Neonatal Screening Program Data: systematic review and meta-analysis

  • Shoraka, Hamid Reza;Haghdoost, Ali Akbar;Baneshi, Mohammad Reza;Bagherinezhad, Zohre;Zolala, Farzaneh
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.2
    • /
    • pp.34-43
    • /
    • 2020
  • Phenylketonuria is a disease caused by congenital defects in phenylalanine metabolism that leads to irreversible nerve cell damage. However, its detection in the early days of life can reduce its severity. Thus, many countries have started disease screening programs for neonates. The present study aimed to determine the worldwide prevalence of classic phenylketonuria using the data of neonatal screening studies.The PubMed, Web of Sciences, Sciences Direct, ProQuest, and Scopus databases were searched for related articles. Article quality was evaluated using the Joanna Briggs Institute Critical Appraisal Evaluation Checklist. A random effect was used to calculate the pooled prevalence, and a phenylketonuria prevalence per 100,000 neonates was reported. A total of 53 studies with 119,152,905 participants conducted in 1964-2017 were included in this systematic review. The highest prevalence (38.13) was reported in Turkey, while the lowest (0.3) in Thailand. A total of 46 studies were entered into the meta-analysis for pooled prevalence estimation. The overall worldwide prevalence of the disease is 6.002 per 100,000 neonates (95% confidence interval, 5.07-6.93). The meta-regression test showed high heterogeneity in the worldwide disease prevalence (I2=99%). Heterogeneity in the worldwide prevalence of phenylketonuria is high, possibly due to differences in factors affecting the disease, such as consanguineous marriages and genetic reserves in different countries, study performance, diagnostic tests, cutoff points, and sample size.

Differential Diagnosis of Hyperphenylalaninemias (고페닐알라닌혈증의 진단 및 평가)

  • Lee, Jeongho
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.3
    • /
    • pp.110-117
    • /
    • 2015
  • All infants should be screened for phenylketonuria (PKU) within the three days of life, in order to allow timely dietary intervention to protect children with PKU from neurologic damage in Korea. A commonly used cut-off level for diagnosis of PKU is $240{\mu}mol/L$ (4 mg/dL). Up to 2% of cases of hyperphenylalaninemias (HPA) detected by the screening test will account for a disorder of $BH_4$ metabolism. Therefore, analysis of blood or urinary pterins is essential, backed up with measurement of DHPR activity, as this allows differentiation of $BH_4$ disorders. A $BH_4$ loading test and measurement of neurotransmitters in CSF provide further important information to the severity of $BH_4$ deficiency and $BH_4$ loading test can detect patients with $BH_4$ deficiency and $BH_4$ responsive PKU. Several protocols for $BH_4$ loading test have been described, involving treatment with $BH_4$ for periods ranging from 1 day to 1 month, and using doses of $BH_4$ of 10-20 mg/kg. There is general agreement that a reduction on blood phenylalanine of at least 30% in response to $BH_4$ loading indicates a clinically significant effect, although in some tests a lower cut-off value may be defined for individual patients, or no specific cut-off value is proposed. The frequency of $BH_4$ responsiveness is highest in patients with mild HPA and mild to moderate PKU resulting from PAH mutations with residual activity.

A Case with Tyrosinemia Type I Detected by Neonatal Screening Test (신생아 대사이상 선별검사 이상으로 진단된 I형 타이로신혈증)

  • Sohn, Young Bae;Lee, Hae-Sang;Lee, Jang Hoon;Hwang, Jin Soon
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.2
    • /
    • pp.99-103
    • /
    • 2012
  • Tyrosinemia type I is an autosomal recessive inborn error of tyrosine metabolism that caused a mutation. Clinical symptoms include progressive liver damage with liver failure, coagulopathy, hypophosphataemic rickets, renal tubular dysfunction and a high risk of hepatocellular carcinoma. If left untreated, the affected infants may die from liver failure within the first year of life. PharmacoloIcal therapy with 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) has offered an effective therapeutic option in addition to dietary restriction of tyrosine and phenylalanine. As prognosis of tyrosinemia type I is improving with early diagnosis and early treatments, it meets the criteria for a condition that would benefit from newborn screening. We report a case of tyrosinemia type I diagnosed by newborn screening and successive biochemical analysis of plasma and urine, treated by dietary restriction and NTBC.

  • PDF

Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response

  • Gong, Xiao-Xiao;Yan, Bing-Yu;Hu, Jin;Yang, Cui-Ping;Li, Yi-Jian;Liu, Jin-Ping;Liao, Wen-Bin
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1181-1197
    • /
    • 2018
  • Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at $4^{\circ}C$ for 2 h) and LT24 (cold treatment at $4^{\circ}C$ for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.

Gene Expression as Related to Ripening in High Temperature during Different Coloration Stages of 'Haryejosaeng' and 'Shiranuhi' Mandarin Fruits (온주밀감 '하례조생'과 '부지화' 과실의 착색 단계별 고온에 의한 성숙 관련 유전자의 발현 변화)

  • Ahn, Soon Young;Kim, Seon Ae;Moon, Young-Eel;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.665-676
    • /
    • 2016
  • As high temperature during citrus growing season has caused a serious problems including inferior coloration in production of mandarins in Korea, we were to investigate the expression pattern of several genes related with coloration during the ripening in high temperature condition of citrus fruits. The expression of genes related with sugar metabolism, cell wall degradation, and flavonoid synthesis in high temperature conditions was investigated in fruits of 'Haryejosaeng' (Citrus unshiu) and 'Shiranuhi' mandarin (C. reticulata). While the expression of beta-amylase (BMY), phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), and flavanone 3-hydroxylase (F3H) was differently induced, expression of polygalacturonase (PG) decreased dependently on temperature conditions. In 'Haryejosaeng' mandarin, while the expression of genes related to the skin coloration, such as CHS and F3H genes increased at $25^{\circ}C$, the expression of PAL and stilbene synthase (STS) genes were induced at $30-35^{\circ}C$ in all ripening stages. In 'Shiranuhi' mandarin, the expression of the BMY gene decreased at early time point in all temperature condition and then increased at $30-35^{\circ}C$ than at $25^{\circ}C$ in the ripening stage 2 to 3 of fruits. F3H and STS genes also showed the tendency to decrease at $30-35^{\circ}C$. Although the expression levels of genes in ripening stage 1 and stage 2 of fruits showed similar patterns in both 'Haryejosaeng' and 'Shiranuhi', the expression levels of genes were down-regulated in late ripening stage of 'Shiranuhi' fruits compared to 'Haryejosaeng'. In general, the mRNA levels of seven tested genes were higher in 'Haryejosaeng' than in 'Shiranuhi' mandarin, and expression of genes by high temperature was regulated sensitively in 'Haryejosaeng' compared to 'Shiranuhi' mandarin. Further investigations of expression of various genes based on transcriptome analysis in early ripening stage can provide valuable information about the responses to climatic changes in ripening citrus fruits.