• 제목/요약/키워드: phenolic wastewater

검색결과 24건 처리시간 0.029초

Candida tropicalis PW-51을 이용한 페놀수지 폐수의 처리 (Treatment of Phenolic Resin Wasterwater by Candida tropicalis PW-51)

  • 김성빈;김희식;오희목;윤병대;김치경
    • 미생물학회지
    • /
    • 제35권3호
    • /
    • pp.237-241
    • /
    • 1999
  • 페놀수지 폐수는 41,000 mg/l 의 페놀과 2,800 mg/l 의 포름알데히드를 포함하고 있어 직접적인 생물학적 처리가 어렵다. 자연계에서 분리된 Candida tropicalis PW-51 은 100 mg/l 이하의 포름알데히드 존재하에서 1,000 mg/l 의 페놀을 분해하였으나 포름알데히드의 농도가 증가함에 따라 페놀분해는 저해되었다. 페놀수지 폐수를 1/40 희석하였을 때 페놀류 화합물 농도가 882 mg/l 이었는데, 회분배양 후 페놀농도는 81 mg/l로 약 91% 분해되었다. 폐수를 1/40, 1/20 희석한 후 C.tropicalis PW-51에 의해 생물학적으로 연속처리한 결과 페놀류 화합물은 92% 까지 분해되었다. 그러나 1/10 희석된 폐수에서는 초기 페놀류 화합물 농도가 2,875 mg/l로 높아 생물학적 처리가 이루어지지 않고 균체가 사멸하였다. 1/40, 1/20 희석된 페수의 생물학적 처리후 잔류 페놀류 화합물을 흡착처리한 결과 최종 처리수에서 페놀류 화합물의 농도는 1 mg/l 이하로 총 페놀제거효율은 99.9%에 달하였다.

  • PDF

Determination of 11 Phenolic Endocrine Disruptors using Gas Chromatography/Mass Spectrometry-Selected Ion Monitoring in Five Selected Wastewater Influents

  • Kim, Hyub
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.216-223
    • /
    • 2008
  • An efficient method for the simultaneous determination of eleven phenolic endocrine-disrupting chemicals (EDCs) present in wastewater influent samples was described. The 11 phenolic EDCs including alkylphenols, chlorophenols, and bisphenol A were determined by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) following two work-up methods for comparison; isobutoxycarbonyl (isoBOC) derivatization and tert-butyldimethylsilyl (TBDMS) derivatization. The wastewater influent samples containing the 11 EDCs were adjusted to pH 2 with $H_2SO_4$ and then cleaned up with n-hexane. Next, they were subjected to solid-phase extraction (SPE) with XAD-4 resin and subsequently converted to isoBOC or TBDMS derivatives for sensitivity analysis with gas chromatography/mass spectrometry-selected ion monitoring (GC/MSSIM). Following isoBOC derivatization and TBDMS derivatization, the recoveries were 86.6-105.2% and 97.6-142.7%, the limits of quantitation (LOQ) for the 11 phenolic EDCs for SIM was 0.001-0.050 ng/mL and 0.003-0.050 ng/mL, and the SIM responses were linear with the correlation coefficient varying by 0.9717-0.9995 and 0.9842-0.9980, respectively. When these methods were applied to five selected wastewater influent samples, for isoBOC derivatization and TBDMS derivatization the ranges of concentration detected were 0.2-99.6 ng/mL and 0.4-147.4 ng/mL, respectively.

MLE type MBBR을 이용한 페놀화합물 함유폐수의 처리특성 (Characteristics of Phenolic Wastewater Treatment using Moving Bed Biofilm Reactor in the MLE Process)

  • 김문호;오성모;배윤선;박철휘
    • 상하수도학회지
    • /
    • 제21권5호
    • /
    • pp.521-529
    • /
    • 2007
  • Nutrient removal from synthetic wastewater was investigated using a MLE (Modified-Ludzack Ettinger) type MBBR (Moving Bed Biofilm Reactor), with different phenol ($C_6H_5OH$) concentrations, in order to determine the inhibition effects of phenol on biological nutrient removal and the biodegradation of phenolic wastewater. The wastewater was prepared by mixing a solution of molasses with known amounts of phenol and nutrients. The experiments were conducted in a lab-scale MLE type MBBR, operated with four different phenol concentrations (0, 67, 100 and 168mg/L) in the synthetic feed. Throughout the experiments, the ratio of the phenolic COD concentration to the total COD was varied from 0 to 1. Throughout batch test, the SNR (Specific Nitrification Rate) and SDNR (Specific Denitrification Rate) were significantly influenced by changes of the phenol concentration. Phenol was inhibitory to the nitrification/denitrification process, and showed greater inhibition with higher initial phenol concentrations. The SNR observed with 0, 67, 100 and 168mg phenol/L were very different like 10.12, 6.95, 1.51 and $0.35mg\;NH_{3^-}N/gMLVSS$ hr, respectively. Similarly, the SDNR observed at 0, 67, 100 and 168mg phenol/L were different like 0.322, 0.143, 0.049and 0.006mgN/gMLVSS day, respectively.

세라믹담체를 이용한 페놀계 산업폐수의 생물학적 처리 (Biological Treatment of Phenolic Industrial Wastewater by a Mixed Culture Immobilized on Ceramic Beads)

  • 오희목;구영환;안극현;장갑용;고영희;권기석;윤병대
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.755-762
    • /
    • 1995
  • A phenolic resin industrial wastewater containing about 41,000 mg/l of phenol and 2,800 mg/l of formaldehyde was biologically treated by a mixed culture GE2 immobilized on ceramic beads. This study was carried out with three experimental groups : Control-only added the sludge of papermill wastewater ; GE2 treatment-added GE2 to Control ; Ceramic treatment-applied ceramic carrier to GE2 treatment. When the original wastewater was diluted 80 times with aerated tap-water, influent COD$_{Mn}$ WaS 1,140 mg/l and that of the effluent was in the range of 22-35 mg/l, which was not much different among the experimental groups. However, at 20-times dilution, influent COD$_{Mn}$ was 4,800 mg/l and the effluent COD$_{Mn}$ of Control, GE2 treatment and Ceramic treatment was 179, 128 and 94 mg/l, respectively. COD$_{Mn}$, removal efficiency by Ceramic treatment was the highest, at 98.0%. At this time, the effluent phenol concentration of Control, GE2 treatment and Ceramic treatment was 10.71, 7.93 and 5.60, respectively. As the dilution times decreased, the removal efficiency of COD$_{Mn}$ and phenol did not change much, but COD$_{Mn}$ and phenol concentration of the effluent increased. Consequently, it is likely that the phenolic industrial wastewater containing phenol and formaldehyde can be biologically treated using a GE2 and ceramic carrier and that at 40-times dilution, the effluent completely meets the effluent standards for industrial wastewater treatment plant.

  • PDF

Phenol류의 분석방법에 관한 연구(I) (Analytical Methods for Phenolic Compounds in Water and Wastewaters(I))

  • 김낙주;신현진
    • 한국환경과학회지
    • /
    • 제7권6호
    • /
    • pp.811-815
    • /
    • 1998
  • Currently in Korea, standard operating procedure for the analyses of phenolic compounds in water is the spectrometric comparison of colors developed by 4-amino antipyrin with phenolic compounds. It is however that this method cannot identify individual compound and that some phenolic compounds do not react with 4-amino antipyrin. Spectrometric determinations of phenolic compounds were compared with chromatographic analyses of gas chromatography (GC) and high pressure liquid chromatography (HPLC) of various phenolic compounds. Individual phenolic compounds could be determined by both chromatographic methods but HPLC methods were more precise with lower detection levels in general.

  • PDF

Regulation of Phycocyanin Development by Phenolic Compounds in the Cyanobacterium Anabaena sp. PCC 7120

  • Kim, Jin-Yong;Jo, Yeara;Kim, Young-Saeng;Lee, Eun-Jin;Yoon, Ho-Sung
    • 생태와환경
    • /
    • 제39권4호통권118호
    • /
    • pp.445-449
    • /
    • 2006
  • Phenolic compounds are manufacturing by-products commonly found in industrial wastewater. The toxicity of high level phenolic compounds in wastewater threatens not only the aquatic organisms, but also many components of the adjacent ecosystem. One of the major light harvesting pigments in cyanobacteria is phycocyanin which can be rapidly and specifically degraded by external stimuli such as nutritional depletion or environmental stress. We employed the cyanobacterium Anabaena sp. PCC 7120 as an indicator organism in estimating the pollution level by phenolic compounds. The phycocyanin content of the cyanobacterium decreased without significantly altering the total chlorophyll as the phenol concentration in a medium increased. We examined the phenol contamination level using the correlation of the phycocyanin content and the phenol concentration. Our results indicated that no significant pollution by phenolic compounds was found in several waterbodies in the vicinity of Daegu, South Korea.

Phenolic Wastewater Treatment by a Mixed Culture GE2 Immobilized on Activated Carbon

  • Oh, Hee-Mock;Ku, Young-Hwan;Ahn, Keuk-Hyon;Kwon, Gi-Seok;Kho, Yung-Hee;Mheen, Tae-Ick;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권2호
    • /
    • pp.116-119
    • /
    • 1996
  • The biological treatment by a mixed culture GE2 immobilized on activated carbon was investigated with a phenolic resin industrial wastewater containing 41,000 mg/l of phenol and 2,800 mg/l of formaldehyde. At a dilution of 20 times with aerated tap water, influent and effluent $COD_{Mn}$ were 4,587 mg/l and 46 mg/l, that is, $COD_{Mn}$ removal efficiency was 99.0%. At this time, phenol and formaldehyde con-centration of the effluent were 1.24 and 6.80 mg/l, indicating removal efficiencies of 99.9 and 94.1%, respectively.

  • PDF

Phenolic compounds removal by grasses and soil bacteria after land application of treated palm oil mill effluent: A pot study

  • Phonepaseuth, Phongphayboun;Rakkiatsakul, Viroj;Kachenchart, Boonlue;Suttinun, Oramas;Luepromchai, Ekawan
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.127-136
    • /
    • 2019
  • Land application of treated palm oil mill effluent (TPOME) could be used as an alternative tertiary wastewater treatment process. However, phenolic compounds in TPOME might be leached to the environment. This study investigated the ability of grasses on reducing phenolic compounds in the leachate after TPOME application. Several pasture grasses in soil pots were compared after irrigating with TPOME from stabilization ponds, which contained 360-630 mg/L phenolic compounds. The number of soil bacteria in planted pots increased over time with the average of $10^8CFU/g$ for mature grasses, while only $10^4-10^6CFU/g$ were found in the unplanted control pots. The leachates from TPOME irrigated grass pots contained lower amounts of phenolic compounds and had lower phytotoxicity than that of control pots. The phenol removal efficiency of grass pots was ranged 67-93% and depended on grass cultivars, initial concentration of phenolic compounds and frequency of irrigations. When compared to water irrigation, TPOME led to an increased phenolic compounds accumulation in grass tissues and decreased biomass of Brachiaria hybrid and Brachiaria humidicola but not Panicum maximum. Consequently, the application of TPOME could be conducted on grassland and the grass species should be selected based on the utilization of grass biomass afterward.

염소산화에 의한 에스트로겐성 화학물질의 활성저감 (Decrease of Activity of Estrogenic Chemicals by Chlorination)

  • 이병천;이상협;龜井翼;眞炳泰基
    • 상하수도학회지
    • /
    • 제19권1호
    • /
    • pp.98-105
    • /
    • 2005
  • The effects of chlorination on the elimination of three estrogenic chemicals such as $17{\beta}$-estradiol (E2), nonylphenol (NP) and bis-phenol A (BPA) were investigated using yeast two-hybrid assay (YTA), estrogen receptor competition assay (ER-CA), and high-performance liquid chromatography/mass spectrometer (LC/MS). Results of YTA, ECA and the analysis of LC/MS indicated that the estrogenic activity of above mentioned three endocrine disruptors were significantly reduced as the result of chlorination. The decrease in estrogenic activity paralleled with decrease in estrogenic chemicals under the influence of free chlorine. One common characteristic of estrogenic chemicals is the presence of a phenolic ring. Considering that a phenolic ring is likely to undergo some sort of transformation in aqueous chlorination solution, the above mentioned results may be applied to the rest of the other estrogenic chemicals in natural waters.

Biodegradation of Endocrine-disrupting Phenolic Compounds Using Laccase Followed by Activated Sludge Treatment

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권5호
    • /
    • pp.294-298
    • /
    • 2003
  • Endocrine-disrupting phenolic compounds in the water were degraded by laccase from Trametes sp. followed by activated sludge treatment. The effect of temperature on the degradation of phenolic compounds and the production of organic compounds were investigated using endocrine-disrupting chemicals such as bisphenol A, 2.4-dichlorophenol, and diethyl phthalate. Bisphenol A and 2.4-dichlorophenol disappeared completely after the laccase treatment, but no disappearance of diethyl phthalate was observed. The Michaelis-Menten type equation was proposed to represent the degradation rate of bisphenol A by the lacasse under various temperatures. After the laccase treatment of endocrine-disrupting chemicals, the activated sludge treatment was attempted and it could convert about 85 and 75% of organic compounds produced from bisphenol A and 2.4-dichlorophenol into H$_2$O and CO$_2$, respectively.