• Title/Summary/Keyword: phenol resorcinol formaldehyde adhesive

Search Result 6, Processing Time 0.017 seconds

Properties of Glued Laminated Timber Made from Fast-growing Species with Mangium Tannin and Phenol Resorcinol Formaldehyde Adhesives

  • Hendrik, Jessica;Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Santoso, Adi;Pizzi, Antonio
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.253-264
    • /
    • 2019
  • This study characterized the chemical compounds in tannin from mangium (Acacia mangium) bark extract and determined the physical-mechanical properties of glued laminated timber (glulam) made from sengon (Falcataria moluccana), jabon (Anthocephalus cadamba), and mangium wood. The adhesives used to prepare the glulam were based on mangium tannin and phenol resorcinol formaldehyde resin. Five-layer glulam beams measuring $5cm{\times}6cm{\times}120cm$ in thickness, width, and length, respectively, were made with a glue spread of $280g/m^2$ for each glue line, cold pressing at $10.5kgf/cm^2$ for 4 h and clamping for 20 h. Condensed mangium tannin consisted of 49.08% phenolic compounds with an average molecular weight of 4745. The degree of crystallinity was 14.8%. The Stiasny number was 47.22%. The density and the moisture content of the glulams differed from those of the corresponding solid woods with mangium having the lowest moisture content (9.58%) and the highest density ($0.66g/cm^3$). The modulus of rupture for all glulam beams met the JAS 234-2003 standard but the modulus of elasticity and the shear strength values did not. Glulam beams made with tannin had high delamination under dry and wet conditions, but glulam made from sengon and jabon wood met the standard's requirements. All glulam beams had low formaldehyde emissions and were classified as $F^{****}$ for formaldehyde emissions according to the JAS 234 (2003) standard.

Performance of Six-Layered Cross Laminated Timber of Fast-Growing Species Glued with Tannin Resorcinol Formaldehyde

  • Deazy Rachmi TRISATYA;Adi SANTOSO;Abdurrachman ABDURRACHMAN;Dina Alva PRASTIWI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.81-97
    • /
    • 2023
  • The aim of this study were to evaluate tannin resorcinol formaldehyde (TRF) for the preparation of cross-laminated timbers (CLTs) made from fast-growing tree species and to analyze the physical and mechanical properties of CLTs. TRF copolymer resin was prepared by using the bark extracts of Swietenia mahagoni (L.) Jacq. It was observed that the TRF adhesive possessed less solid content (23.59%), high viscosity (11.35 poise), and high pH values (10.0) compared to the standard phenol resorcinol formaldehyde. The TRF adhesive was applied to produce CLTs with the addition of 15% tapioca and flour as an extender. The six-layered CLTs were produced from sengon (Falcataria moluccana Miq.), jabon [Anthocephalus cadamba (Roxb) Miq.], coconut (Cocos nucifera L.), and the combination of coconut-jabon and coconut-sengon wood. The analysis of variance revealed that the layer composition of CLT significantly affected the physical and mechanical properties of the beam. While the modulus of rupture met the standard, the moisture content and modulus of elasticity values did not fulfill JAS 1152-2007. All of the CLTs produced in this study demonstrated low formaldehyde emission, ranging from 0.001 mg/L to 0.003 mg/L, thereby satisfying the JAS 1152 for structural glue laminated timber.

Flexural Modulus of Larch Boards Laminated by Adhesives with Reinforcing Material

  • Injeong LEE;Weontae OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.14-22
    • /
    • 2023
  • Economical use of larix (larch) boards (grade 3) in industries is lower than that of imported hardwood; thus, studies have been conducted toward performance improvement of larix boards. Herein, flexural modulus of larix board samples laminated with wood adhesives polyurethane resins, poly (vinyl acetate) resins, phenol-resorcinol-formaldehyde resins, melamine-formaldehyde resins, and urea-formaldehyde resins was compared with that of the samples bonded with adhesives reinforced with mesh-type basalt fibers. Moreover, the flexural moduli of the laminated samples bonded by mesh-type basalt fibers were compared with those of reinforced samples. The results showed that boards laminated with polyurethane and urea-formaldehyde resin adhesives had higher flexural modulus than those without the lamination. In particular, the increase in the flexural modulus was relatively significant for the 2- and 3-ply board structures laminated with polyurethane adhesives compared to those with reinforcement. The 3-ply board structure without reinforcement had the highest flexural modulus when the urea-formaldehyde resin adhesive was used.

Bonding Performance of Adhesives with Lamina in Structural Glulam Manufactured by High Frequency Heating System

  • Kim, Keon-Ho;Kim, Se-Jong;Yang, Sang-Yun;Yeo, Hwanmyeong;Eom, Chang-Deuk;Shim, Kugbo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.682-690
    • /
    • 2015
  • The bonding performance of two types of wood adhesives, namely phenol-resorcinol-formaldehyde (PRF) resin and melamine-urea-formaldehyde (MUF) resin for glued laminated timber manufactured by high frequency (HF) heating was evaluated. The HF heating system consists of HF oscillator with dielectric heating system for curing adhesives, and hydraulic press system for clamping glued laminated timber. The designed frequency and output power of the HF system was as 5 MHz and 60 kW, respectively. To verify dielectric heating mechanism under HF oscillation, the heat loss factors of laminae and adhesives were measured. The results show that it is possible to selectively heat adhesives for their curing due to the remarkably higher loss factor of the adhesives than those of wood laminae. The temperature of adhesive in the bonding line reached up to the set temperature within a few seconds by high frequency oscillating, which advanced the curing of adhesive afterwards. The bonding performance, such as shear strength of bonding line, water soaking delamination, and boiling water soaking delamination of PRF resin met the requirement of Korean Standard (KS), however the MUF resin did not meet the KS requirement of boiling water soaking delamination. These results indicate that the HF heating system is successful to manufacture glued laminated timbers with PRF resins to meet the bonding requirements.

Evaluation of Shear Strength by Direction of Wood Grain for Korean Pine Using PRF Adhesive (페놀레조시놀공축합수지로 접착된 국산 잣나무의 목리방향별 전단성능평가)

  • Park, Sun-Hyang;Kim, Kwang-Mo;Pang, Sung-Jun;Kong, Jin Hyuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.243-249
    • /
    • 2017
  • This study was performed to find out the optimum adhesive conditions on manufacturing a cross-laminated timber (hereinafter CLT) with using domestic Korean Pine (Pinus koraiensis). The adhesive conditions including a applied amount of the glue and a Pressure are the one of the most important key factors on establishing CLT production process. The shear strength was examined with differing the adhesive conditions while using Phenol Resorcinol Formaldehyde Resin Adhesive (PRF resin). The optimum adhesive conditions was confirmed to be: glue spread of $250g/m^2$ and Pressure of 0.8 MPa respectively. The grain directions of glued specimens were also considered, perpendicularly bonded and parallelly bonded groups. Shear strength of the former group showed lower values than the latter group which is considered to be the effect of a rolling shear. Meanwhile the shear strength of both group satisfied the Korean Standard (KS F 3021) and the European Standard (EN 14080 and EN 16351). The results derived from this study can be used as the basic data for manufacturing the CLT with domestic Korean Pine. And additional researches for the other species including domestic Korean Larch and Pitch Pine is also now being performed.

Evaluation of Adhesive Characteristics of Mixed Cross Laminated Timber (CLT) Using Yellow Popular and Softwood Structural Lumbers

  • Keon-Ho KIM;Hyun-Mi LEE;Min LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • To evaluate the adhesive characteristics of mixed cross-laminated timber (CLT) using domestic softwoods structural lumber proposed by KS F 3020 and yellow poplar, penetration depth of adhesive and thickness of bonding line were analyzed based on the results of boiling water soaking delamination. 3 Types of adhesives and 2 types of major layer were divided into a 5 ply CLT using yellow popular as minor layer. The bonding performance of the mixed CLT as structural members was evaluated based on the KS F 2081. The thickness of bonding line between layers of the mixed CLT was measured with a scanning electron microscope, and the adhesive penetration depth in the layer members was measured with an optical microscope. As a result of boiling water soaking delamination test of mixed CLT, the CLT specimens using PRF and PUR adhesives met the requirements of KS F 2081. It was verified that the penetration path of the adhesive in the layes was mainly through the tracheid cell in the case of Japanese larch and Korean red pine layers, and through the vessel and radial tissue in yellow popular layers. The penetration depth of the adhesive was the highest for the PRF adhesive under the same pressing time conditions, and the thickness of the bonding line was in inverse proportion to the penetration depth in the case of the PUR adhesive.