• Title/Summary/Keyword: phenanthrene

Search Result 275, Processing Time 0.03 seconds

Biodegradation of Phenanthrene by Sphingomonsa sp. Strain KH3-2

  • Shin, Su-Kyuong;Oh, Young-Sook;Kim, Sang-Jin
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 1999
  • A phenanthrene-degrading bacterium was isolated from an oil-spilled intertidal sediment sample and identified as Sphingomonas sp. KH3-2. The strain degraded polycyclic aromatic compounds such naphthalene, fluorene, biphenyl, and dibenzothiophene. When strain KH3-2 was cultured for 28 days at 25C, a total of 500 ppm of phenanthrene was degrated with a concomitant production of biomass and Folin-Ciocalteau reactive aromatic intermediates. Analysis of intermediates during phenanthrene degradation using high-performance liquid chromatography and gas chromatography/mass spectrometry indicated that Sphingomonas sp. KH3-2 primarily degrades phenanthrene to 1-hydroxy-2-naphthoic acid (1H2NA) and further metabolizes 1H2NA through the degradation pathway of naphthalene.

  • PDF

Enhanced Bioremediation of Phenanthrene Using Biosurfactant (생물계면활성제를 이용한 Phenanthrene의 생물학적 처리)

  • 신경희;김경웅
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • This study was carried out 1) to investigate the pH effect on solubilization of phenanthrene by biosurfactant in aqueous system and 2) to evaluate the pH effect on the biodegradation rate of phenanthrene in the presence and the absence of the biosurfactant by phenanthrene degraders. Tween 80, which is a chemically synthesized surfactant, showed greater solubilizing capacity than rhamnolipid. The solubilization capacity can be expressed as a MSR(molar solubilization ratio=moles of organic compounds solubilized per mole of surfactant). The calculated MSR of Tween 80 and rhamnolipid were 0.1449 and 0.0425 respectively. The kinetic study of phenanthrene solubilization by rhamnolipid showed that solubilization mechanism could reach equilibrium within 24 hours. Addition of 240 ppm rhamnolipid solution, which concentration is 4.3 times of Critical Micelle Concentration(CMC), caused 9 times solubility enhancement compared to water solubility. The highest solubilities were detected around a pH range of 4.5-5.5. Changes in apparent solubility with the changes in pH are possibly related to the fact that the rhamnolipid, an anionic surfactant, can form different structures depending on the pH. Two biodegradation experiments were performed in the absence and the presence of rhamnolipid, with the cell growth investigated using a spread plate method. The specific growth rates at pH 6 and 7 were higher than at the other pH, and the HPLC analysis data, for the total phenanthrene loss, confirmed the trends in the $\mu$(specific growth rate) values. In presence of rhamnolipid, maximum $\mu$ values shifted from around pH 5 which showed maximum enhancement of solubility in the abiotic experiment, compared to the $\mu$ values obtained without the biosurfactant. In this study, the increase in the observed specific grow rate(1.44 times) was not as high as the increase in solubilization(5 times). This was supported by the fact all the solubilized phenanthrene is not bioavailable to microorganisms.

Electrokinetic Remediation of Organic Mixture Contaminated Soil (복합 유기 오염물로 오염된 세립질 지반의 Electrokinetic 정화 처리에 관한 연구)

  • 김수삼;한상재;김강호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In this research, phenol was selected as a representative hydrophilic organic compound and phenanthrene as a representative hydrophobic organic contaminant in petroleum. Fine-grained soil which was manufactured artificially in laboratory was contaminated and EK remediation tests were executed. Also, in order to increase removal efficiency, the surfactant that had been used with improvement technique at the pump-and-treat was used by enhanced method. In the test, the phenol which has high solubility is easily removed, but phenanthrene which has low solubility is almost not. Also, it seems to be the delay phenomenon that the phenanthrene is accumulated near the cathode department vicinity at the enhanced technique which applied the surfactant, but the removal efficiency increases as the surfactant concentration increases. By the test which increases with time, the enhanced method with increasing time is more efficient than the method with increasing surfactant.

Phylogenetic Analysis of Phenanthrene-Degrading Sphingomonas

  • Han, Kyu-Dong;Jung, Yong-Tae;Son, Seung-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.942-948
    • /
    • 2003
  • Soil samples were obtained from 5 sites contaminated with polycyclic aromatic hydrocarbons (PAHs). These soil samples were cultured in using phenanthrene as a sole carbon and energy source, and 36 strains of phenanthrene-degrading bacteria were isolated from 3 sites. Most of them degraded 500 ppm of phenanthrene within 8 to 10 days, and these isolates could degrade a few other PAHs other than phenanthrene. Their genotypes were determined by restriction digests of the l6S rRNA genes [amplified ribosomal DNA restriction analysis (ARDRA)]. It was found that all the phenanthrene degrading isolates were included in 4 ARDRA types, and they showed a strict site endemism. l6S rDNAs of 12 strains selected from different sites were sequenced, and they were all confirmed as Sphingomonas strains. Their l6S rDNA sequences were compared for phylogenetic analysis; their sequence showed a similar result to ARDRA typing, thus indicating that these heterotrophic soil bacteria are not regionally mixed. In addition, it was found that the microbial diversity among sampling sites could be monitored by l6S rDNA PCR-RFLP pattern alone, which is simpler and easier to perform, without l6S rDNA sequence analysis.

Phenanthrene Uptake by Surfactant Sorbed on Activated Carbon (활성탄에 흡착된 계면활성제에 의한 Phenanthrene 흡착)

  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • Phenanthrene uptake by surfactant sorbed on activated carbon was investigated to recycle of surfactant in washed solution for contaminated soil. The partitioning of phenanthrene to the activated carbon coating with Triton X-100 as a surfactant was also evaluated by a mathematical model. Phenanthrene-contaminated soil (200 mg/kg) was washed in 10 g/L of surfactant solution. Washed phenanthrene in solution was separated by various particle loadings of granular activated carbon through a mode of selective adsorption. Removal of phenanthrene was 99.3%, and surfactant recovery was 88.9% by 2.5 g/L of granular activated carbon, respectively. Phenanthrene uptake by activated carbon was greater than that of phenanthrene calculated by a standard model for a system with one partitioning component. This is accounted for enhanced surface solubilization by hemi-micelles adsorbed onto granular activated carbon. The effectiveness factor is greater than 1 and molar ratio of solubilization to sorbed surfactant is higher than that of liquid surfactant. Results suggest that separation of contaminants and surfactants by activated carbon through washing process in soil is much effective than that of calculated in a theoretical model.

Phenanthrene으로 오염된 불포화토양내에서 오존이동 모델링

  • 정해룡;배기진;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.86-88
    • /
    • 2002
  • The mathematical model was proposed to simulate ozone transport and remediation in unsaturated soils contaminated with phenanthrene. Soil column experiments were also carried out to calibrate the mathematical model. The experimental results successfully matched with the modeling results in various soil conditions. The model proposed nondimensional fraction factor to reveal reactivity between phenanthrene and gas phase ozone and liquid phase ozone. From sensitivity analysis, the fraction factor and stoichiometric coefficient decreased as water content increased. Simulation results showed increased SOM content retarded the ozone transport and the phenanthrene removal due to increased ozone consumption.

  • PDF

Biodegradation of Phenanthrene by Transformant Trametes versicolor MrP1 (구름버섯의 형질전환체 Trametes versicolor MrP1에 의한 Phenanthrene의 생분해)

  • Choi, Yun-Seong;Choi, Hyoung-Tae;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.273-278
    • /
    • 2007
  • As a model compound of PAHs (polycyclic aromatic hydrocarbons) phenanthrene has been regarded as a toxic material, mutagen and carcinogen in various animals. Biodegradation conditions of phenanthrene such as pH, temperature, shaking speed, stabilizer and cofactor of degrading enzymes were investigated with Trametes versicolor and its transformant T. versicolor MrP1 in YMG medium, minimal medium and soil microcosm. T. versicolor MrP1 can overexpress mrp gene encoding Mn-repressed peroxidase that is involved in fungal degradation. Biodegradations of phenanthrene by T. versicolor and T. versicolor MrP1 were optimally performed in conditions of weak-acid (pH 6.0), $30^{\circ}C$, shaken culture and medium containing 5 mM veratryl alcohol or tryptophan. In these optimal conditions, biodegradation of phenanthrene by T. versicolor MrP1 is 31% higher than that of wild type strain in a minimal medium for 20 days. Biodegradation of phenanthrene by T. versicolor MrP1 was also higher than that of wild type in soil microcosm. T. versicolor MrP1 can be a excellent candidate for the bioremediation of PAHs contaminated environments.

A study on Surfactants for Electrokinetic Soil Remediation (동전기적 토양복원에 적합한 계면활성제의 선정)

  • 이현호;박지연;김상준;이유진;양지원
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Three different surfactants, APG, Brij30, and SDS, were tested to study the characteristics of sorption on soil surfaces, washing ability, biodegradability, and electrokinetic removal. Kaolinite and phenanthrene were selected as a model soil and a representative HOC, respectively. Phenanthrene was sorbed on kaolinite up to 2,200 mg/kg dry soil. The APG, Brij30, and SDS were sorbed on soil to 40, 7, and 4g/kg soil, respectively. The washing ability of phenanthrene was in order of Brij30>SDS>APG. The biodegradability tested with sludge was in order of APG>Brij30>SDS. In the electrokinetic test, the highest removal efficiency was obtained with APG that exhibited the highest electroosmotic flow. To increase the removal efficiency of HOC in the electrokinetic remediation, the most important factor was the selection of surfactant which maximized the electroosmotic flow.

Enhanced In-situ Mobilization and Biodegradation of Phenanthrens from Soil by a Solvent/Surfactant System

  • Kim, Eun-Ki;Ahn, Ik-Sung;L.W.Lion;M.L.Shuler
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.716-719
    • /
    • 2001
  • The mobilization and biodegradation of phenanthrene in soil was enhanced by using paraffin oil, which was stabilized by the addition of a surfactant (Brji 30). The ratio of paraffin oil/Brij 30 was determined by measuring the change in the critical micelle concentration. When only surfactant was used, the stabilized paraffin oil emulsion could dissolve more phenanthrene in the water phase. Column experiment showed increased phenanthrene mobilization from the contaminated soil. The phenanthrene mobilized in the paraffine oil/Brij 30 emulsion was biodegraded faster than that in water phase or surfactant solution. This result indicates that a paraffin oil/surfactant system can be effectively used for the removal of PAH from contaminated soil.

  • PDF

Treatability Study of Phenanthrene Contaminated Soil using Heme and Hydrogen Peroxide (Heme과 과산화수소를 이용한 Phenanthrene 오염토양 처리에 관한 연구)

  • 염혜정;강구영;박갑성;임남웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.92-96
    • /
    • 1997
  • 고농도로 오염된 난분해성 유해오염물질은 토양계에 존재하고 있는 미생물에 대한 독성과 낮은 활성도로 인하여 복원기술 발전에 제한되어진다. 본 연구에서는 pH 4.8과 pH 7.7인 토양에 Phenanthrene을 인위적으로 오염시킨후 heme 촉매와 과산화수소를 이용하여 오염토양을 복원하는 기술에 대한l 기초적 연구를 수행하였다. Heme과 과산화수소를 오염토양에 첨가한 뒤 30일 반응후 토양내 존재하고 있는 Phenanthrene 초기농도 약 400 mg/kg soil에 대한 분해율은 pH 4.8과 7.7 오염토양내 각각 50%와 67%이었다. Heme과 과산화수소를 이용한 오염토양의 복원기술은 중성 오염토양에서 약 3일후 67% 빠르게 분해되는 결과를 보여주고 있다.

  • PDF