• Title/Summary/Keyword: phaseolotoxin

Search Result 4, Processing Time 0.018 seconds

Identification and Characterization of Coronatine-Producing Pseudomonas syringae pv. actinidiae

  • Han, Hyo-Shim;Koh, Young-Jin;Hur, Jae-Seoun;Jung, Jae-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.110-118
    • /
    • 2003
  • Pseudomonas syringae pv. actinidiae strains, which cause canker disease in kiwifruit, were collected from kiwifruit orchards in Korea and identified using biochemical and physiological tests. The nucleotide sequences of the 16s rDNA and 16s-23s internally transcribed spacer of the isolates were found to be Identical to those of' the pathotype strain, Kwl 1, of P syringae pv. actinidiae. Remarkably, no coding sequence for phaseolotoxin biosynthesis or phaseolotoxin- resistant ornithine carbamoyltransferase was found by PCR amplification in any of the new Korean isolates of pseudomonas syringae pv. actinidiae, although this was clearly identified in the control pathotype Kwl 1 reference strain. In contrast, three primer sets derived from the coronatine biosynthetic gene cluster and DNA from the Korean strains yielded amplified DNA fragments of the expected size. A sequence analysis of the PCR products revealed that P. syringae pv. actinidiae and the Korean strains of pv. actinidiae contain coronafncate ligase genes (cfl)with identical sequences, whereas their. corR genes exhibited 91% sequence similarity. The production of coronatine, instead of phaseolotoxin, by the Korean strains of P. syringae pv. actinidiae was confirmed by a bioassay using reference pathovars known to produce coronatine and phaseolotoxin. The genes for coronatine biosynthesis in the Korean strains of P. syringae pv. actinidiae were found to be present on plasmids.

Development of Specific Markers for Identification of Biovars 1 and 2 Strains of Pseudomonas syringae pv. actinidiae

  • Lee, Young Sun;Kim, Gyoung Hee;Koh, Young Jin;Zhuang, Qiguo;Jung, Jae Sung
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.162-167
    • /
    • 2016
  • Pseudomonas syringae pv. actinidiae, the causal agent of canker in kiwifruit, can be divided into three biovars (biovars 1, 2, and 3). Strains belonging to biovar 1 produce phaseolotoxin and were isolated in Japan and Italy before 2008. Strains of biovar 2 produce coronatine instead of phaseolotoxin and have been isolated only in Korea. Strains belonging to biovar 3 produce neither phaseolotoxin nor coronatine and are responsible for the global outbreak of bacterial canker of kiwifruit in recent years. The biovar 3-specific primer set was developed in a previous work. In this study, two sets of PCR primers specific to strains of biovars 1 and 2, respectively, were developed based on random amplified polymorphic DNA analyses. Primers PsaJ-F and PsaJ-R produced a 481-bp region with genomic DNA of biovar 1 strains, whereas primers PsaK-F and PsaK-R amplified a 413-bp region present only in the genome of biovar 2 strains.

Phytotoxins of Pseudomonas syringae and PCR Primers for Detection of Phytotoxin-Producing Strains (Pseudomonas syringae의 식물독소와 독소 생산 균주의 검출을 위한 PCR Primer)

  • 정재성;한효심;고영진
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.123-133
    • /
    • 2001
  • Many pathovars of the species Pseudomonas syringae are known to produce different phytotoxins as secondary metabolites. Although phytotoxins generally enhance the virulence of P. syringae, they are not required for pathogenesis. Among the phytotoxins produced by P. syringae, lipodepsipeptides, coronatine, phaseolotoxin, and tabtoxin are the most well-known toxins which have been intensively studied for their structure, mode of action, biosynthesis, and regulation. A polymerase chain reaction (PCR) technique that amplifies a segment of the phytotoxin gene cluster using a primer set has been developed in recent years. This method offers the advantages of speed and sensitivity compared to the approaches based on physiological and biochemical methods. PCR detection of genes involved in the production of toxins could be exploited for early diagnosis of plant diseases caused by P. syringae pathovars.

  • PDF