• Title/Summary/Keyword: phase-lag

Search Result 408, Processing Time 0.029 seconds

Alcohol Production by Extractive Fermentation in a Continuous Bioreactor (연속 생물반응기 안에서 유출 발효에 의한 알코올 생산)

  • 김재형;전순배이기영김동운
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.21-30
    • /
    • 1989
  • Lauryl alcohol was used as extracting solvent of ethanol, and its toxicity on the free cells or immobilized cells was tested. To increase ethanol productivity, extractive fermentation method combined with ethanol fermentation and ethanol recovery was applied to the immobilized batch and continuous fermenter. As the concentration of LaOH was increased, the lag phase became longer, but specific growth rate did not change greatly. And a cell entrapment technique could protect the yeast cells against both substrate inhibition and solvent toxicity. When the glucose concentration was 400 g/l and the LaOH/fermentation medium ratio was 4, total ethanol productivity increased with the enhancement of LaOH volume, and maximum productivity was 2.75 g/l.hr in the immobilized batch fermentation.

  • PDF

Application of Predictive Food Microbiology Model in HACCP System of Milk (우유의 HACCP 시스템에서 Predictive Food Microbiology Model 이용)

  • 박경진;김창남;노우섭;홍종해;천석조
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.2
    • /
    • pp.103-110
    • /
    • 2001
  • Predictive food microbiology(PFM) is an emerging area of food microbiology since the later 1980’s. It does apply mathematical models to predict the responses of microorganism to specified environmental variables. Although, at present, PFM models do not completely developed, models can provide very useful information for microbiological responses in HACCP(Hazard Analysis Critical Control Point) system and Risk Assessment. This study illustrates the possible use of PFM models(PMP: Pathogen Modeling Program win5.1) with milk in several elements in the HACCP system, such as conduction of hazard analysis and determination of CCP(Critical Control Points) and CL(Critical Limits). The factors likely to affect the growth of the pathogens in milk involved storage fixed factors were pH 6.7, Aw 0.993 and NaCl 1.3%. PMPwin5.1 calculated generation time, lag phase duration, time to level of infective dose for pathogens across a range of storage (Critical Control Points) and CL(Critical Limits). The factors likely to affect the growth of the pathogens in milk involved storage temperature, pH, Aw and NaCl content. The factors likely to affect the growth of the pathogens in milk involved storage temperature, pH, Aw and NaCl content. The variable factor was storage temperature at the range of 4~15$^{\circ}C$ and the fixed factors were pH 6.7, Aw 0.993 and NaC 1.3%. PMPwin5.1 calculated generation time, lag phase duration, time to level of infective dose for pathogens across a range of storage temperature.

  • PDF

Glyphosate Toxicity: II. EPSP-synthase Activity in Cell Suspension Culture of Corydalis Sempervirens and Lycopersicon Esculentum (Glyphosate 독성(毒性): II. corydalis Sempervirens와 토마토의 세포배양체(細胞培養體)에서 EPSP-synthase의 활성(活性)에 미치는 영향(影響))

  • Kim, Tae-Wan;Amrhein, Nikolaus
    • Korean Journal of Weed Science
    • /
    • v.15 no.2
    • /
    • pp.148-153
    • /
    • 1995
  • Glyphosate (N-[phosphonomethyl]glycine) applied to the assimilate-exporting leaves or sprayed to the whole plants of tomato(Lycopersicon esculentum Mil var. Moneymaker) induced the rapid inhibition of 5-enolpyruvyl skimic acid 3-phosphate synthase(EPSP-synthase). It shows that EPSP-synthase activity precedes chlorophyll loss. There is no difference in EPSP-synthase activity between in vivo tomato meristem and cell suspension culture if glyphosate is not applied. The EPSP-synthase activity is in a range of 4 to 6 nkat per mg protein. The inhibition of EPSP-synthase action is induced within 36 h after glyphosate application while the Chl contents were reduced 48 h after the application. In cell suspension culture of tomato and Corydalis (Corydalis sempervirens), a sublethal concentration of glyphosate retards the fresh weight increase and prolonged lag phase. The fresh weight is reached maximal about 14 days after the subculture in the presence of glyphosate. The inhibitory effect of glyphosate on EPSP-synthase is remarkably induced in lag phase.

  • PDF

Jet Lag and Circadian Rhythms (비행시차와 일중리듬)

  • Kim, Leen
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.1
    • /
    • pp.57-65
    • /
    • 1997
  • As jet lag of modern travel continues to spread, there has been an exponential growth in popular explanations of jet lag and recommendations for curing it. Some of this attention are misdirected, and many of those suggested solutions are misinformed. The author reviewed the basic science of jet lag and its practical outcome. The jet lag symptoms stemed from several factors, including high-altitude flying, lag effect, and sleep loss before departure and on the aircraft, especially during night flight. Jet lag has three major components; including external de synchronization, internal desynchronization, and sleep loss. Although external de synchronization is the major culprit, it is not at all uncommon for travelers to experience difficulty falling asleep or remaining asleep because of gastrointestinal distress, uncooperative bladders, or nagging headaches. Such unwanted intrusions most likely to reflect the general influence of internal desynchronization. From the free-running subjects, the data has revealed that sleep tendency, sleepiness, the spontaneous duration of sleep, and REM sleep propensity, each varied markedly with the endogenous circadian phase of the temperature cycle, despite the facts that the average period of the sleep-wake cycle is different from that of the temperature cycle under these conditions. However, whereas the first ocurrence of slow wave sleep is usually associated with a fall in temperature, the amount of SWS is determined primarily by the length of prior wakefulness and not by circadian phase. Another factor to be considered for flight in either direction is the amount of prior sleep loss or time awake. An increase in sleep loss or time awake would be expected to reduce initial sleep latency and enhance the amount of SWS. By combining what we now know about the circadian characteristics of sleep and homeostatic process, many of the diverse findings about sleep after transmeridian flight can be explained. The severity of jet lag is directly related to two major variables that determine the reaction of the circadian system to any transmeridian flight, eg., the direction of flight, and the number of time zones crossed. Remaining factor is individual differences in resynchmization. After a long flight, the circadian timing system and homeostatic process can combine with each other to produce a considerable reduction in well-being. The author suggested that by being exposed to local zeit-gebers and by being awake sufficient to get sleep until the night, sleep improves rapidly with resynchronization following time zone change.

  • PDF

Optimum signal setting based on phase sequence and interval in an isolated intersection (교통신호의 페이스순서 및 페이스간격을 고려한 신호최적화)

  • 김경철;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.45-58
    • /
    • 1996
  • In a large signal intersection, it is the most important to set phase sequences and phase intervals of traffic signal in order to improve the efficiency of the capacity as well as safety. These setting allows to select the best sequence of signal phase among several alternatives, and thus to rearrange the starting and ending points of the individual phase using an effective interphase periods (EIP). The EIP is a gap between previous and current traffic movements at a potential collision point in an intersection. Each of traffic movements has an equality for safety and efficiency at the balanced condition of EIP. This paper presents how to set optimally the phase sequences and intervals of traffic signal in an intersection using phase based approach. And in the second part, we applied the theory developed in the first part. In particular, a numerical example of phase base signal setting is presented using a matrix computation method in order to select the best sequence among several alternatives, and thus to rearrange the starting and ending points of the individual phase using the EIP. This method also allows to apply to optimum signal setting even in five-lag or staggered-type intersection.

  • PDF

Modeling of Typical Microbial Cell Growth in Batch Culture

  • Jianqiang Lin;Lee, Sang-Mok;Lee, Ho-Joon;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.382-385
    • /
    • 2000
  • A mathematical model was developed, based on the time dependent changes of the specific growth rate, for prediction of the typical microbial cell growth in batch cultures. This model could predict both the lag growth phase and the stationary growth phase of batch cultures, and it was tested with the batch growth of Trichoderma reesei and Lactobacillus delbrueckii.

  • PDF

Response Function of Temperature Fluctuation in the Poiseulle Flows (포와셀 관유동에서 온도변화의 응답특성)

  • 정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.699-705
    • /
    • 2002
  • The present study discusses the deviation from the pure dead-time model of passive scalars such as temperature and concentration in the Poiseulle flow Even in the case of no thermal diffusion, there exists a substantial amount of damping and large deviation of phase lag from that computed by the traditional dead-time model after only 10 diameter downstream. These are caused by the phase difference of temperature in the radial direction due to the nonuniform velocity distribution. In the presence of thermal diffusion, damping is more pronounced.

Biochemical Characterization of the Dual Positional Specific Maize Lipoxygenase and the Dependence of Lagging and Initial Burst Phenomenon on pH, Substrate, and Detergent during Pre-steady State Kinetics

  • Cho, Kyoung-Won;Jang, Sung-Kuk;Huon, Thavrak;Park, Sang-Wook;Han, Ok-Soo
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.100-106
    • /
    • 2007
  • The wound-inducible lipoxygenase obtained from maize is one of the nontraditional lipoxygenases that possess dual positional specificity. In this paper, we provide our results on the determination and comparison of the kinetic constants of the maize lipoxygenase, with or without detergents in the steady state, and characterization of the dependence of the kinetic lag phase or initial burst, on pH, substrate, and detergent in the pre-steady state of the lipoxygenase reaction. The oxidation of linoleic acid showed a typical lag phase in the pre-steady state of the lipoxygenase reaction at pH 7.5 in the presence of 0.25% Tween-20 detergent. The reciprocal correlation between the induction period and the enzyme level indicated that this lag phenomenon was attributable to the slow oxidative activation of Fe (II) to Fe (III) at the active site of the enzyme as observed in other lipoxygenase reactions. Contrary to the lagging phenomenon observed at pH 7.5 in the presence of Tween-20, a unique initial burst was observed at pH 6.2 in the absence of detergents. To our knowledge, the initial burst in the oxidation of linoleic acid at pH 6.2 is the first observation in the lipoxygenase reaction. Kinetic constants (Km and kcat values) were largely dependent on the presence of detergent. An inverse correlation of the initial burst period with enzyme levels and interpretations on kinetic constants suggested that the observed initial burst in the oxidation of linoleic acid could be due to the availability of free fatty acids as substrates for binding with the lipoxygenase enzyme.

EFFECTS OF PHASE-LAGS AND VARIABLE THERMAL CONDUCTIVITY IN A THERMOVISCOELASTIC SOLID WITH A CYLINDRICAL CAVITY

  • Zenkour, Ashraf M.
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.435-454
    • /
    • 2016
  • This paper investigates the effect of dual-phase-lags on a thermoviscoelastic orthotropic solid with a cylindrical cavity. The cylindrical cavity is subjected to a thermal shock varying heat and its material is taken to be of Kelvin-Voigt type. The phase-lag thermoelastic model, Lord and Shulman's model and the coupled thermoelasticity model are employed to study the thermomechanical coupling, thermal and mechanical relaxation (viscous) effects. Numerical solutions for temperature, displacement and thermal stresses are obtained by using the method of Laplace transforms. Numerical results are plotted to illustrate the effect phase-lags, viscoelasticity, and the variability thermal conductivity parameter on the studied fields. The variations of all field quantities in the context of dual-phase-lags and coupled thermoelasticity models follow similar trends while the Lord and Shulman's model may be different. The influence of viscosity parameter and variability of thermal conductivity is very pronounced on temperature and thermal stresses of the thermoviscoelastic solids.