Browse > Article
http://dx.doi.org/10.5831/HMJ.2016.38.3.435

EFFECTS OF PHASE-LAGS AND VARIABLE THERMAL CONDUCTIVITY IN A THERMOVISCOELASTIC SOLID WITH A CYLINDRICAL CAVITY  

Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University, Department of Mathematics, Faculty of Science, Kafrelsheikh University)
Publication Information
Honam Mathematical Journal / v.38, no.3, 2016 , pp. 435-454 More about this Journal
Abstract
This paper investigates the effect of dual-phase-lags on a thermoviscoelastic orthotropic solid with a cylindrical cavity. The cylindrical cavity is subjected to a thermal shock varying heat and its material is taken to be of Kelvin-Voigt type. The phase-lag thermoelastic model, Lord and Shulman's model and the coupled thermoelasticity model are employed to study the thermomechanical coupling, thermal and mechanical relaxation (viscous) effects. Numerical solutions for temperature, displacement and thermal stresses are obtained by using the method of Laplace transforms. Numerical results are plotted to illustrate the effect phase-lags, viscoelasticity, and the variability thermal conductivity parameter on the studied fields. The variations of all field quantities in the context of dual-phase-lags and coupled thermoelasticity models follow similar trends while the Lord and Shulman's model may be different. The influence of viscosity parameter and variability of thermal conductivity is very pronounced on temperature and thermal stresses of the thermoviscoelastic solids.
Keywords
dual-phase-lags; thermoviscoelastic; cylindrical cavity; variable thermal conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Ezzat, M. I. Othman and A. S. El-Karamany, State space approach to generalized thermo-viscoelasticity with two relaxation times, Int. J. Eng. Sci. 40(3) (2002), 283-302.   DOI
2 A. M. Abd-Alla, H.A.H. Hammad and S. M. Abo-Dahab, Magneto-thermo-viscoelastic interactions in an unbounded body with a spherical cavity subjected to a periodic loading, Appl. Math. Comput. 155(1) (2004), 235-248.   DOI
3 M. Aouadi and A.S. El-Karamany, The relaxation effects of volume properties in two-dimensional generalized thermoviscoelastic problem, Appl. Math. Comput. 151(3) (2004), 689-711.   DOI
4 M. I. A. Othman, Effect of rotation and relaxation time on a thermal shock problem for a half-space in generalized thermo-viscoelasticity, Acta Mech, 174(3-4) (2005), 129-143.   DOI
5 X. Tian and Y. Shen, Study on generalized magneto-thermoelastic problems by FEM in time domain, Acta Mech. Sinica 21(4) (2005), 380-387.   DOI
6 M. Rakshit and B. Mukhopadhyay, A two dimensional thermoviscoelastic problem due to instantaneous point heat source, Math. Comput. Model. 46(11-12) (2007), 1388-1397.   DOI
7 N. Sarkar and A. Lahiri, The effect of fractional parameter on a perfect conducting elastic half-space in generalized magneto-thermoelasticity, Mecc, 48(1) (2013), 231-245.   DOI
8 M. A. Ezzat, A. S. El-Karamany and A. A. El-Bary, Generalized thermo-viscoelasticity with memory-dependent derivatives, Int. J. Mech. Sci. 89 (2014), 470-475.   DOI
9 A. S. El-Karamany and M. A. Ezzat, Two-temperature GreenNaghdi theory of type III in linear thermoviscoelastic anisotropic solid, Appl. Math. Model. 39(8) (2015), 2155-2171.   DOI
10 A. D. Kovalenko and V. G. Karnaukhov, A linearized theory of thermoviscoelasticity, Polymer Mech. 8(2) (1972), 194-199.   DOI
11 A. D. Drozdov, A constitutive model in finite thermoviscoelasticity based on the concept of transient networks, Acta Mech. 133(1) (1999), 13-37.   DOI
12 M. Rakshit Kundu and B. Mukhopadhyay, A thermoviscoelastic problem of an infinite medium with a spherical cavity using generalized theory of thermoelasticity, Math. Comput. Model. 41(1) (2005), 25-32.   DOI
13 A. Baksi, B. K. Roy and R. K. Bera, Eigenvalue approach to study the effect of rotation and relaxation time in generalized magneto-thermo-viscoelastic medium in one dimension, Math. Comput. Model. 44(11-12) (2006), 1069-1079.   DOI
14 A. Kar and M. Kanoria, Generalized thermo-visco-elastic problem of a spherical shell with three-phase-lag effect, Appl. Math. Model. 33(8) (2009), 3287-3298.   DOI
15 M. Kanoria and S. H. Mallik, Generalized thermoviscoelastic interaction due to periodically varying heat source with three-phase-lag effect, Europ. J. Mech. A/Solids 29(4) (2010), 695-703.   DOI
16 M. A. Ezzat, A. S. El-Karamany, A. A. El-Bary and, M. A. Fayik, Fractional calculus in one-dimensional isotropic thermo-viscoelasticity, Compt. Rend. Mec. 341(7) (2013), 553-566.   DOI
17 A. M. Zenkour, D. S. Mashat and A. E. Abouelregal, The effect of dual-phase-lag model on reflection of thermoelastic waves in a solid half space with variable material properties, Acta Mech. Solida Sinica 26(6) (2013), 659-670.   DOI
18 S. Deswal and K. K. Kalkal, Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures, Int. J. Heat Mass Transfer 66 (2013), 451-460.   DOI
19 S. Deswal and K. K. Kalkal, Three-dimensional half-space problem within the framework of two-temperature thermo-viscoelasticity with three-phase-lag effects, Appl. Math. Model. 39(23-24) (2015), 7093-7112.   DOI
20 A. E. Abouelregal, Generalized thermoelasticity for an isotropic solid sphere in dual-phase-lag of heat transfer with surface heat flux, Int. J. Comput. Meth. Eng. Sci. Mech. 12(2) (2011), 96-105.   DOI
21 I. A. Abbas and A. M. Zenkour, Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating, J. Comput. Theor. Nanosci. 11(3) (2014), 642-645.   DOI
22 A. E. Abouelregal and A. M. Zenkour, Effect of phase lags on thermoelastic functionally graded microbeams subjected to ramp-type heating, IJST, Trans. Mech. Eng. 38(M2) (2014), 321-335.
23 A. M. Zenkour, Two-dimensional coupled solution for thermoelastic beams via generalized dual-phase-lags model, Math. Model. Analys 21(3) (2016), 319-335.   DOI
24 D. Y. Tzou, A unified approach for heat conduction from macro- to micro-scales, J. Heat Transfer 117(1) (1995), 8-16.   DOI
25 D. Y. Tzou, Macro to Micro-scale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington DC, 1996.
26 H. W. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids 15(5) (1967), 299-309.   DOI
27 N. Noda, Thermal Stresses in Materials with Temperature-dependent Properties, Thermal Stresses I, R.B. Hetnarski (Editor), North-Holland, Amsterdam, 1986.
28 E. Green and K. A. Lindsay, Thermoelasticity, J. Elast. 2(1) (1972), 1-7.   DOI
29 A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elast. 31(3) (1993), 189-209.   DOI
30 A. C. Eringen, Mechanic of Continua, John Wiley, Sons Inc., New York, 1967.
31 G. Honig and U. Hirdes, A method for the numerical inversion of Laplace transform, J. Comp. Appl. Math. 10(1) (1984), 113-132.   DOI
32 J. C. Misra, N. C. Chattopadhyay and S. C. Samanta, Study of the thermoelastic interactions in an elastic half space subjected to a ramp-type heatinga statespace approach, Int. J. Eng. Sci. 34(5) (1996), 579-596.   DOI