• 제목/요약/키워드: phase transformation temperature

검색결과 508건 처리시간 0.034초

지르칼로이-4의 고온 수증기 산화에서 압력효과

  • 박광헌;김광표;황주호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2000년도 춘계학술발표회 초록집
    • /
    • pp.5-5
    • /
    • 2000
  • In the severe accident case like LOCA, Zircaloy(Zry) claddings are oxidized not only in high temperature but also in high pressures. It is a concem whether the safety of high bum up fuels can be maintained during severe accident. The effects of steam pressure on Zry-4 oxidation, and the effect of prc-existing oxide layer on the cladding in the high temperature-high pressure oxidation of Ziy-4 were investigated. The experimental temperature range was $700-900^{\circ}C$, and the pressures were between 0.1 and l5.0MPa. Partial pressure of steam tumed out to be the important one rather than total gas pressure. The higher the steam pressure was applied, the thicker the oxide became. nle effect of st,earn pressure on the oxidation of claddings with preexisting oxide was about 40-60% less effective than that of pickled cladding. Aocelerated oxidation in highpressure slean1 seems to be originated from the formation of microcracks produced during the transformation of tetragonal zirconia to monoclinic phase. Steam pressure seems to affect the stability of tetragonal phase.

  • PDF

가스침탄 처리한 AISI 8620 강에서 급냉제가 표면잔류응력에 미치는 영향 (Effect of Quenchant Temperature on the Surface Residual Stress in Gas Carburized AISI 8620 Steel)

  • 장충길;한준희;황농문;김종집;임병수
    • 열처리공학회지
    • /
    • 제2권2호
    • /
    • pp.27-32
    • /
    • 1989
  • The effect of quenchant temperature on the surface residual stress was studied for AISI 8620 steel. Specimens were carburized at $900^{\circ}C$ in all case type furnace using a gas-base atmosphere of methanol cracked and liquefied petroleum gas, and then subjected to single reheat quenchant in oil or salt bath in the temperature range of $60^{\circ}C$ to $300^{\circ}C$. After carburizing and reheat Quenching, residual stress was measured by the hole drilling method. Experimental results showed that the surface residual stress was increased as the quenchant temperature was raised. This is in contrast to the fact that the formation of phase of low transformation strain such as bainite results in lower surface compressive stress. The greater compressive stress observed in specimens Quenched at higher temperature may be attributed to the shifting of the transformation start point farther from the surface, as was reported in other carburizing steels.

  • PDF

Microstructural modeling of two-way bent shape change of composite two-layer beam comprising a shape memory alloy and elastoplastic layers

  • Belyaev, Fedor S.;Evard, Margarita E.;Volkov, Aleksandr E.;Volkova, Natalia A.;Vukolov, Egor A.
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.245-253
    • /
    • 2022
  • A two-layer beam consisting of an elastoplastic layer and a functional layer made of shape memory alloy (SMA) TiNi is considered. Constitutive relations for SMA are set by a microstructural model capable to calculate strain increment produced by arbitrary increments of stress and temperature. This model exploits the approximation of small strains. The equations to calculate the variations of the strain and the internal variables are based on the experimentally registered temperature kinetics of the martensitic transformations with an account of the crystallographic features of the transformation and the laws of equilibrium thermodynamics. Stress and phase distributions over the beam height are calculated by steps, by solving on each step the boundary-value problem for given increments of the bending moment (or curvature) and the tensile force (or relative elongation). Simplifying Bernoulli's hypotheses are applied. The temperature is considered homogeneous. The first stage of the numerical experiment is modeling of preliminary deformation of the beam by bending or stretching at a temperature corresponding to the martensitic state of the SMA layer. The second stage simulates heating and subsequent cooling across the temperature interval of the martensitic transformation. The curvature variation depends both on the total thickness of the beam and on the ratio of the layer's thicknesses.

용융 접합한 주철 - Al 합금의 금속간화합물 층 형성 거동에 미치는 열처리의 영향 (Effect of Heat Treatment on the Formation Behavior of Intermetallic Compound Layer in Fusion Bonding of Cast Iron and Al Alloy)

  • 강성민;한광식;강용주;김광원;임예라;문지선;손광석;김동규
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.50-56
    • /
    • 2012
  • Fusion bonding of cast iron and Al alloy is an effective way to improve the properties such as low inertia, high efficiency and corrosion resistance in machinery parts. In case of fusion bonding, intermetallic compound layers are formed at the interface between cast iron and Al alloy interface. It is important to control the intermetallic compound layers for improving bonding strength. The formation behavior of intermetallic compound layer by heat treatment has been investigated. Heat treatment was performed at temperature from $600^{\circ}C$ to $800^{\circ}C$ with $100^{\circ}C$ interval for an hour to investigate the phase transformation during heat treatment. Heat treated specimens were analyzed by using FE-SEM, EPMA and EDS. The EPMA/WDS results revealed that various phases were formed at the interface, which exhibited 4 distinct intermetallic compound layers such as ${\tau}_6-Al_{4.5}FeSi$, ${\tau}_2-Al_3FeSi$, ${\tau}_{11}-Al_5Fe_2Si $and ${\eta}-Al_5Fe_2$. Also, fine precipitation of ${\tau}_1-Al_2Fe_3Si_3$ phase was formed between ${\tau}_{11}$ and ${\eta}$ layer. The phase fraction in intermetallic compound layer was changed by heat treatment temperature. At $600^{\circ}C$, intermetallic compound layer of ${\tau}_6$ phase was mainly formed with increasing heat treatment time. With increasing heat treatment temperature to $800^{\circ}C$, however, ${\tau}_2$ phase was mainly distributed in intermetallic compound layer. ${\tau}_1$ phase was remarkably decreased with increasing heat treatment time and temperature.

생체주입용 Ni-Ti 합금의 시효특성(I) (Characteristics of Aging of Ni-Ti Alloy Used for Implant Fabrications(I))

  • 조형준;이준희;박기룡
    • 대한의용생체공학회:의공학회지
    • /
    • 제10권3호
    • /
    • pp.261-268
    • /
    • 1989
  • The characteristics of aging of near-equiatomic Ni-Ti alloy has been studied by the three point bend test and the measurement of Differential Scanning Calorimetry(DSC). The DSC is used to measure precise transformation temperatures and the amount of thermal energy required for the corresponding phase transformation. The effort of hardness on aging treatment in saline solution of $37^{\circ}C$ was higher for the annealed than solution treated specimens. As the testing temperature inc- rease from under $M_f$ to above $A_f$ temperature, the elastic stiffness increased. Almost full recovery can be achieved after bending below Belo outer fiber strain. Total bend recovery decreased gradually as aging time and bend angle is increased.

  • PDF

고변형능 라인파이프강의 미세조직과 기계적 특성에 미치는 압연 및 냉각 조건의 영향 (Effects of Rolling and Cooling Conditions on Microstructures and Mechanical Properties of High-Deformable Pipeline Steels)

  • 이상인;황병철
    • 열처리공학회지
    • /
    • 제27권5호
    • /
    • pp.235-241
    • /
    • 2014
  • Effects of rolling and cooling conditions on microstructures and mechanical properties of high-deformable pipeline steels were investigated in this study. Six kinds of pipeline steels were fabricated by varying rolling and cooling conditions, and their microstructures were analyzed by scanning electron microscopy, electron back-scattered diffraction, and transmission electron microscopy. Tensile and Charpy impact tests were conducted on the steels in order to examine the mechanical properties. The steels rolled in the two-phase region showed better low-temperature toughness than those in the single-phase region due to the larger amount of ferrites having high-angle boundaries, although they have lower strength and absorbed energy. The steel rolled in single-phase and finish-cooled at higher temperature showed a good combination of high strength and good low-temperature toughness as well as excellent deformability of the lowest yield ratio and the highest uniform elongation because of the presence of fine ferrite and a mixture of various low-temperature transformation phases.

극저온용 스테인레스 강의 저온거동 특성 (Mechanical Characteristics of Stainless Steel under Low Temperature Environment)

  • 홍진한;금동민;한대석;박인범;전민성;고경완;이제명
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.530-537
    • /
    • 2008
  • Austenitic stainless steels(SUS 304, SUS 316), which are used for safety control valve of LNG carrier, are occasionally exposed in the cryogenic environment. In this regards, it is required to evaluate the mechanical characteristics under the low temperature environment. In this study, a series of uniaxial tensile test was carried out varying temperature for austenitic stainless steel. The phenomena of the strain-induced plasticity have been observed on the all temperature ranges. The critical value for threshold of 2nd hardening due to the phase transformation induced plasticity as well as the increase of hardening have been reported. The summarized experimental results would be used for the validation of numerical techniques applicable for the nonlinear hardening behavior of austenitic stainless steel under the cryogenic temperature environment.

가속냉각시 강판에 발생하는 응력 및 변형에 대한 연구 (Analysis of stress and distortion that develop during accelerated cooling of plate)

  • 김호영;김창영;주웅용;장래웅
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.952-958
    • /
    • 1988
  • 본 연구에서는 폭방향 불균일 냉각에 따른 열응력이 판변형 및 잔류응력의 주 요원인이라는 고려하에 냉각중에 압연판의 온도분포 및 열응력을 예측할 수 있는 수치 해석 모델을 구성하였다. 온도와 응력 계산에 상변태 현상을 고려하였으며, 판변형 은 압축성분 열응력에 의한 좌굴현상으로 고려하여 해석하였다.

천이금속 영향에 따른 SiC계 도전성 세라믹 복합체의 특성 (Properties of SiC Electrocondutive Ceramic Composites according to Transition Metal)

  • 신용덕;오상수;전재덕;박영;임승혁;이동윤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 C
    • /
    • pp.1588-1590
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% $TiB_2$ and using 61vol.% SiC 39vol.% WC powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at 1800$^{\circ}C$ for 4 hours. Reactions between SiC and transition metal $TiB_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), $TiB_2$ and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-$TiB_2$, and SiC(2H), WC and YAG($Al_5Y_3O_{12}$) crystal phase on the SiC-WC composites. ${\beta}{\rightarrow}{\alpha}$-SiC phase transformation was ocurred on the SiC-$TiB_2$, but ${\alpha}{\rightarrow}{\beta}$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the flexural strength showed respectively value of 96.2%, 310.19Mpa in SiC-WC composites. The electrical resistivity of the SiC-$TiB_2$ and the SiC-WC composites is all positive temperature cofficient resistance(PTCR) in the temperature ranges from 25$^{\circ}C$ to 500$^{\circ}C$.

  • PDF

SIC 도전성 세라믹 복합체의 특성에 미치는 천이금속의 영향 (Effect of Transition Metal on Properties of SiC Electroconductive Ceramic Composites)

  • 신용덕;오상수;주진영
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권7호
    • /
    • pp.352-357
    • /
    • 2004
  • The composites were fabricated, respectively, using 61vol.% SiC - 39vol.% TiB$_2$ and using 61vo1.% SiC - 39vo1.% WC powders with the liquid forming additives of 12wt% $Al_2$O$_3$+Y$_2$O$_3$ by pressureless annealing at 180$0^{\circ}C$ for 4 hours. Reactions between SiC and transition metal TiB$_2$, WC were not observed in this microstructure. The result of phase analysis of composites by XRD revealed SiC(6H), TiB$_2$ and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-TiB$_2$, and SiC(2H), WC and YAG(Al$_{5}$Y$_3$O$_{12}$) crystal phase on the SiC-WC composites. $\beta$\$\longrightarrow$$\alpha$-SiC phase transformation was ocurred on the SiC-TiB$_2$, but $\alpha$\$\longrightarrow$$\beta$-SiC reverse transformation was not occurred on the SiC-WC composites. The relative density, the vicker's hardness, the flexural strength and the fracture toughness showed respectively value of 96.2%, 13.34GPa, 310.19Mpa and 5.53Mpaㆍml/2 in SiC-WC composites. The electrical resistivity of the SiC-TiB$_2$ and the SiC-WC composites is all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C$ to 50$0^{\circ}C$. 2.64${\times}$10-2/$^{\circ}C$ of PTCR of SiC-WC was higher than 1.645${\times}$10-3/$^{\circ}C$ of SiC-TiB$_2$ composites.posites.