• 제목/요약/키워드: phase separator

검색결과 55건 처리시간 0.02초

Development of a prediction model relating the two-phase pressure drop in a moisture separator using an air/water test facility

  • Kim, Kihwan;Lee, Jae bong;Kim, Woo-Shik;Choi, Hae-seob;Kim, Jong-In
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3892-3901
    • /
    • 2021
  • The pressure drop of a moisture separator in a steam generator is the important design parameter to ensure the successful performance of a nuclear power plant. The moisture separators have a wide range of operating conditions based on the arrangement of them. The prediction of the pressure drop in a moisture separator is challenging due to the complexity of the multi-dimensional two-phase vortex flow. In this study, the moisture separator test facility using the air/water two-phase flow was used to predict the pressure drop of a moisture separator in a Korean OPR-1000 reactor. The prototypical steam/water two-phase flow conditions in a steam generator were simulated as air/water two-phase flow conditions by preserving the centrifugal force and vapor quality. A series of experiments were carried out to investigate the effect of hydraulic characteristics such as the quality and liquid mass flux on the two-phase pressure drop. A new prediction model based on the scaling law was suggested and validated experimentally using the full and half scale of separators. The suggested prediction model showed good agreement with the steam/water experimental results, and it can be extended to predict the steam/water two-phase pressure drop for moisture separators.

다상유동 분리기 모듈화를 위한 유입구 형상 설계에 관한 수치해석적 연구 (Numerical Study on the Inlet Head Configuration of Multi-Phase Separator for Modularization)

  • 홍창기;김윤제
    • 대한기계학회논문집B
    • /
    • 제41권9호
    • /
    • pp.571-577
    • /
    • 2017
  • 본 연구는 수치해석 기법을 활용하여 오일샌드 플랜트에 사용되는 다상유동분리기의 다양한 유입구 형상에 따른 효율 분석에 관한 연구이다. 본 연구에 사용된 유수분리기(FWKO, Free-water knockout)는 유량 $15,89m^3/d$(100 bbl/d), SOR(Steam-to-Oil Ratio) 3.5의 값을 가지며 Stokes 이론을 기반으로 설계되었다. 모듈화를 위하여 두 개의 유수분리기를 병렬 연결하였고 이에 따른 유입구 형상 최적화를 수행하였다. 유입구를 통해 유입되는 비투멘 에멀젼은 $150^{\circ}C$, 50 bar이며, API는 17의 값을 갖는다. 유수분리공정의 평균체류시간은 물과 오일이 95% 분리되는 시간으로 정의하였다. 다상유동의 밀도차에 의한 중력분리과정을 모사하기 위하여 유한체적법(VOF, Volume Of Fluid)과 상차분모델(DPM, Discrete Phase Model)을 조합하여 활용하였으며 준과도(Pseudo-transient) 해석기법을 활용하였다.

Enhancement of the Ionic Conductivity and Mechanical Strength of Micro-porous Separator by Uni-axial Drawing

  • Lee Je-An;Seol Wan-Ho;Lee Yong-Min;Park Jung-Ki
    • 전기화학회지
    • /
    • 제9권1호
    • /
    • pp.29-33
    • /
    • 2006
  • A new porous separator based on poly(vinyl chloride) (PVC)/poly(vinylidene fluoride-co-hexafluoro-propylene) (P(VdF-co-HFP)/poly(methyl methacrylate) (PMMA) was prepared by a phase inversion method. To enhance mechanical property, the membrane was stretched uniaxially at high temperature. Tensile strength and ionic conductivity were measured for various draw ratios. The tensile strength and ionic conductivity were increased with increasing draw ratio. The tensile strength of the separator reached 52MPa after stretching to draw ratio of 5, and the ionic conductivity of the separator was increased from $1.9Xs10^{-4}S/cm\;to\;4.6X10^{-4}S/cm\;at\;25^{\circ}C$. The stretched separator immersed in liquid electrolyte was electrochemically stable up to 4.7 V. The cell based on the stretched separator was maintained at about 99% of the initial discharge capacity after 10th cycle operation at 0.2C rate.

유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학 (Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer)

  • 임영일;;박치균;이병돈;김병국;임동하
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.201-213
    • /
    • 2017
  • 물이 포함된 원유는 oil separator 를 거쳐 물이 제거된다. 본 연구의 목적은 공기-물-기름 3상 혼합물에 대한 3차원 oil separator 의 분리성능을 예측하기 위하여 Eulerian 전산유체역학(CFD: computational fluid dynamics) 모델을 개발하는 것이다. 비압축성, 등온, 비정상상태 CFD 모델식은 공기상을 연속상으로, 물과 기름상을 분산상으로 정의하며, 운동량 보존식은 항력(drag force), 양력(lift force), 다공성매체 저항력을 포함한다. 또한, 난류현상으로 standard k-${\varepsilon}$ 모델이 이용된다. 물과 기름 출구압은 oil separator 의 액위를 결정하는 중요한 인자이며, 정상운전상태 액위 25 cm를 맞추기 위하여 측정압은 각각 6.3 kPa, 5.1 kPa으로 결정되었다. 시간에 따른 공기, 물, 기름의 부피분율의 변화를 조사하였고, 정상상태에 도달하였을 때, 물과 기름상의 침강속도를 oil separator의 종축 길이에 따라 분석하였다. 본 연구에서 제시된 CFD 모델로부터 얻은 oil separator의 기름분리성능은 99.85%이며, 실험값과 거의 일치하였다. 비교적 단순한이 CFD 모델은향후 oil separator의구조를 변경하거나, 최적운전조건을 찾기위하여 유용하게사용될수있을 것이다.

실린더형 기-액 원심분리기 내의 유동특성 연구를 위한 CFD 시뮬레이션 (CFD Simulation to Study Flow Characteristics in Cylindrical Gas-Liquid Cyclone Separator)

  • 박경도;박종천;김경미
    • 한국해양공학회지
    • /
    • 제28권4호
    • /
    • pp.280-287
    • /
    • 2014
  • In this paper, the numerical simulation of the gas-liquid flow in a cylinder cyclone separator is performed to investigate the flow characteristics using a commercial software, FLUENT, which solves the Reynolds-averaged Navier-Stokes(RaNS) equations. First, a single-phase flow with water in a gas-liquid cylinder cyclone(GLCC) separator is simulated and compared with the experiments(Farchi, 1990) and numerical simulations(Erdal, 1997). Then, the characteristics of the multi-phase flow for water-air, mud-only, and mud-air cases are discussed in the view point of the feasibilities for a mud handling system.

New Separators Based on Non-Polyolefin Polymers for Secondary Lithium Batteries

  • Seol, Wan-Ho;Lee, Yong-Min;Lee, Jun-Young;Han, Young-Dal;Ryu, Myung-Hyun;Park, Jung-Ki
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.82-87
    • /
    • 2007
  • New porous separators based on non-polyolefin materials including the blend of poly (vinyl chloride) (PVC)/poly (vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)/poly(methyl methacrylate) (PMMA), and the porous separator based on poly (vinylidene fluoride) (PVdF) were prepared by phase inversion method. The porosity and morphology were controlled with phase inversion rate, which is governed by the relative content of non-solvent and solvent in coagulation bath. To enhance tensile strength, the solvent pre-evaporation and uni-axial stretching processes were applied. The ionic conductivity was increased with increasing stretching ratio, and tensile strength was increased with increasing solvent pre-evaporation time and stretching ratio. The 200% stretched PVdF separator showed 56 MPa of tensile strength, and the ionic conductivity of the stretched PVdF separator was $8.6{\times}10^{-4}\;S\;cm^{-1}\;at\;25^{\circ}C$.

오일입자 원심분리기 유동장의 수치해석적 연구 (A Numerical Study on the Flowfield of a Cyclone Separator for Oil Droplets)

  • 김상덕
    • 한국항공운항학회지
    • /
    • 제23권4호
    • /
    • pp.36-41
    • /
    • 2015
  • The cyclone separator is a simple device, which causes the centrifugal separation of materials such as droplets or particles in a fluid stream. The cyclone separator utilizes the energy obtained from fluid pressure and linear motion to create rotational fluid motion. This rotational motion leads the materials suspended in the fluid to separate from the fluid quickly due to the centrifugal force. The rotation is produced by the tangential or involuted introduction of fluid into the vessel. These materials may be droplets of fuel in blow-by gas through an engine. Droplets suspended in the feed liquid may separate according to size, shape, or density. And the change of part dimension in a cyclone separator can yield the its performance variation. The current study shows the influence of design parameters on the performance of a cyclone separator for blow-by gas.

기액이상류 원심분리기의 성능개선에 관한 연구 (A Study of the Performance Improvement of a Centrifugal Separator for Gas-Liquid Two-Phase Flow)

  • 김진만;이준희;윤용관;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3215-3220
    • /
    • 2007
  • Gas-liquid separator has been designed for the sake of reducing expenses associated with production operations. To date, a number of gas-liquid separators have been installed and put to use for various applications. Despite the advantages of simple and compact configuration of separator with no moving part, its efficient operation is limited in terms of total pressure losses, separation performance and flow-induced noise and vibration, which are closely associated with the very complicated flow phenomena involved. In the present study, a gas-liquid centrifugal separator with a swirl vane is investigated for the purpose of water separation from compressed moisture air. The 3D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find out the best design parameters. From the present study, several attempts are made to improve the performance of conventional separators of centrifugal type.

  • PDF

고속 원심분리장치의 확산판에 따른 상 분리효율에 관한 연구 (A Study on Three-Phase Separation Efficiency according to the Diffusion Plate of a High-Speed Centrifugal Separator)

  • 이춘만;정호인
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.99-103
    • /
    • 2019
  • Recently, as the high-precision machinery industry has developed rapidly, peripheral equipment has been developed to improve machining efficiency. Peripheral equipment for machining includes cooling units, housings, oil separators, and much more. Oil, such as cleaning and cutting fluids, is used for machining. When waste oil is reused, the contamination of the workpieces and reduction in machining accuracy are generated by the waste oil, including sludge. Therefore, the development of an oil separator is necessary for efficiently separating oil, water, and sludge. The purpose of this study is to analyze the oil separation efficiency and flow characteristics of a high-speed centrifugal separator according to the rotation velocity and diffusion plate. The oil separation efficiency and flow characteristics were analyzed using hydrodynamic theory and computational fluid dynamics (CFD). The results of this study will be used as basic data for the development of a high-speed centrifugal separator.

Mud handling system 내 cyclone separator의 집진효율 추정을 위한 공기-분체의 CFD 시뮬레이션 (CFD Simulation of Air-particle Flow for Predicting the Collection Efficiency of a Cyclone Separator in Mud Handling System)

  • 전규목;박종천
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.42-49
    • /
    • 2019
  • Drilling mud was used once in the step of separating the gas and powder they were transported to a surge tank. At that time, the fine powder, such as dust that is not separated from the gas, is included in the gas that was separated from the mud. The fine particles of the powder are collected to increase the density of the powder and prevent air pollution. To remove particles from air or another gas, a cyclone-type separator generally can be used with the principles of vortex separation without using a filter system. In this study, we conducted numerical simulations of air-particle flow consisting of two components in a cyclone separator in a mud handling system to investigate the characteristics of turbulent vortical flow and to evaluate the collection efficiency using the commercial software, STAR-CCM+. First, the single-phase air flow was simulated and validated through the comparison with experiments (Boysan et al., 1983) and other CFD simulation results (Slack et al., 2000). Then, based on one-way coupling simulation for air and powder particles, the multi-phase flow was simulated, and the collection efficiency for various sizes of particles was compared with the experimental and theoretical results.