• Title/Summary/Keyword: phase field model

Search Result 573, Processing Time 0.025 seconds

Numerical Simulation of Irregular Airflow within Wave Power Converter Using OWC by Action of 3-Dimensional Irregular Waves (3차원불규칙파동장하의 진동수주형 파력발전구조물에서 불규칙공기흐름의 수치시뮬레이션)

  • Lee, Kwang-Ho;Park, Jung-Hyun;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.3
    • /
    • pp.189-202
    • /
    • 2012
  • An Oscillating Water Column (OWC) wave generation system uses the air flow induced by the vertical motion of water column in the air chamber as a driving force of turbine. It is well known that OWC is one of the most efficient devices to harness wave power. This study estimated the air flow velocity from the time variation of the water level fluctuation in the air chamber under regular wave conditions using 3-dimensional numerical irregular wave tank (3D-NIT) model that can simulate the 3-dimensional irregular wave field. The applicability of the 3D-NIT model was validated by comparing numerically predicted air flow velocities with hydraulic experimental results. In addition, the characteristics of air flow frequency spectrum variation due to the incident frequency spectrum change, and the variations of frequency spectrum and wave reflection due to the existence of converter inside the air chamber were discussed. It is found that the phase difference exists in between the air flow velocity and the water level fluctuation inside the air chamber, and the peak frequency of the spectrum in water level fluctuation is amplified by the resonance in the air chamber.

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.

Control of Short-period and Solitary Waves Using Two-rowed Impermeable Rectangular Submerged Dike (2열 불투과성 사각형 잠제를 이용한 단주기파랑 및 고립파의 제어)

  • Lee, Kwang-Ho;Jung, Sung-Ho;Ha, Sun-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study numerically investigates the wave control of 2-rowed Impermeable Rectangular Submerged Dike(IRSD) with an object of how to control short-period and solitary waves simultaneously based on the Bragg resonance phenomenon that elevates the wave control performance. The boundary integral method using Green formula and the 3-D one-field Model for immiscible TWO-Phase flows (TWOPM-3D) by 3-D numerical wave flume have been used for the numerical predictions for short-period and solitary waves, respectively. These numerical models were verified through the comparisons with the previously published numerical results by other researchers. Through the parametric tests of numerical experiments for short-period waves, an optimum model of 2-rowed IRSD of a lowest transmission coefficient has been found. Furthermore, the performances of 3-D wave control for solitary waves were evaluated for the various free board, crown widths and gap distance between dikes, and have been compared with those of a single-rowed IRSD. Numerical results show that a 2-rowed IRSD with a less cross sectional area than 1-rowed one improves the wave attenuation performances when it is compared to that of single-rowed IRSD. Within the test frequency ranges of the numerical simulations conducted in this study, 2-rowed IRSD with an optimum gap distance shows an outstanding improvement of the wave attenuation up to 58% compared to that of single-rowed IRSD.

A Joint Application of DRASTIC and Numerical Groundwater Flow Model for The Assessment of Groundwater Vulnerability of Buyeo-Eup Area (DRASTIC 모델 및 지하수 수치모사 연계 적용에 의한 부여읍 일대의 지하수 오염 취약성 평가)

  • Lee, Hyun-Ju;Park, Eun-Gyu;Kim, Kang-Joo;Park, Ki-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.77-91
    • /
    • 2008
  • In this study, we developed a technique of applying DRASTIC, which is the most widely used tool for estimation of groundwater vulnerability to the aqueous phase contaminant infiltrated from the surface, and a groundwater flow model jointly to assess groundwater contamination potential. The developed technique is then applied to Buyeo-eup area in Buyeo-gun, Chungcheongnam-do, Korea. The input thematic data of a depth to water required in DRASTIC model is known to be the most sensitive to the output while only a few observations at a few time schedules are generally available. To overcome this practical shortcoming, both steady-state and transient groundwater level distributions are simulated using a finite difference numerical model, MODFLOW. In the application for the assessment of groundwater vulnerability, it is found that the vulnerability results from the numerical simulation of a groundwater level is much more practical compared to cokriging methods. Those advantages are, first, the results from the simulation enable a practitioner to see the temporally comprehensive vulnerabilities. The second merit of the technique is that the method considers wide variety of engaging data such as field-observed hydrogeologic parameters as well as geographic relief. The depth to water generated through geostatistical methods in the conventional method is unable to incorporate temporally variable data, that is, the seasonal variation of a recharge rate. As a result, we found that the vulnerability out of both the geostatistical method and the steady-state groundwater flow simulation are in similar patterns. By applying the transient simulation results to DRASTIC model, we also found that the vulnerability shows sharp seasonal variation due to the change of groundwater recharge. The change of the vulnerability is found to be most peculiar during summer with the highest recharge rate and winter with the lowest. Our research indicates that numerical modeling can be a useful tool for temporal as well as spatial interpolation of the depth to water when the number of the observed data is inadequate for the vulnerability assessments through the conventional techniques.

A Study on the Development Method of e-Learning Contents by the Level of Demand for Landscaping Practical Education - Development and Reuse of Modular Learning Objects - (조경실무 교육수요 수준별 이러닝 콘텐츠 개발 방법론 - 모듈형 학습객체 개발과 재사용을 중심으로 -)

  • Choi, Ja-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.1-13
    • /
    • 2018
  • Landscape Architecture is a minority manpower field that requires wide knowledge and experience. Therefore, the service market is narrower than other fields, and education service for practitioners is lacking. The purpose of this study is to propose e-learning content development methodology that can provide customized landscaping practical education according to the level of education and increase the economic efficiency of the development process. First, in theoretical review, the ADDIE model was modified to select the curriculum development model that pursues efficiency and introduced the concept of reusing learning objects in the SCORM-based model. In particular, to overcome the problems presented in the precious studies, the analysis and design stages have been strengthened and faculty designers with integrated knowledge of Landscape Architecture and ICT have led the overall phase. The actual development process is based on a step by step procedure--analysis of landscaping practitioners needs and environments, etc., teaching and learning procedures and the design of activities considering contents reuse, the first development such as actual shooting and editing, and the second development reusing the first development content--and was done in the order of evaluation and revision of professionalism and satisfaction. As a result of the study, the space-based courses composed of modular learning objects were first developed as 216 courses in 8 subjects, as 208 courses in 3 subjects in total, in which the modularized learning object are crossed and combined in units and difficulty-based courses were second developed in 216 courses with 3 subjects in total. As a result of the evaluation the satisfaction assessment of the overall satisfaction was 4.20 and the average value of the eight measures was 3.97, both being close to 4.0. For the professional assessment, the scores of 8 subjects were very high at 84.8 to 96.4 points. in context, the scores of 5 subjects were equal to from 89.9 to 96.4 points. In conclusion, as the study was conducted based on a clear understanding of the digital characteristics of e-learning contents and general characteristic of the landscaping industry, it was possible to develop a curriculum by developing a course composed of modular learning objects and reusing learning objects by unit. In particular, it has been proven to be effective in conveying professional knowledge and experiences via general procedures and provided an opportunity to overcome some analog problems that may occur in offline education. In the future, further studies need to be done by expanding the content and by focusing on segmented subjects.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Recent research activities on hybrid rocket in Japan

  • Harunori, Nagata
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.1-2
    • /
    • 2011
  • Hybrid rockets have lately attracted attention as a strong candidate of small, low cost, safe and reliable launch vehicles. A significant topic is that the first commercially sponsored space ship, SpaceShipOne vehicle chose a hybrid rocket. The main factors for the choice were safety of operation, system cost, quick turnaround, and thrust termination. In Japan, five universities including Hokkaido University and three private companies organized "Hybrid Rocket Research Group" from 1998 to 2002. Their main purpose was to downsize the cost and scale of rocket experiments. In 2002, UNISEC (University Space Engineering Consortium) and HASTIC (Hokkaido Aerospace Science and Technology Incubation Center) took over the educational and R&D rocket activities respectively and the research group dissolved. In 2008, JAXA/ISAS and eleven universities formed "Hybrid Rocket Research Working Group" as a subcommittee of the Steering Committee for Space Engineering in ISAS. Their goal is to demonstrate technical feasibility of lowcost and high frequency launches of nano/micro satellites into sun-synchronous orbits. Hybrid rockets use a combination of solid and liquid propellants. Usually the fuel is in a solid phase. A serious problem of hybrid rockets is the low regression rate of the solid fuel. In single port hybrids the low regression rate below 1 mm/s causes large L/D exceeding a hundred and small fuel loading ratio falling below 0.3. Multi-port hybrids are a typical solution to solve this problem. However, this solution is not the mainstream in Japan. Another approach is to use high regression rate fuels. For example, a fuel regression rate of 4 mm/s decreases L/D to around 10 and increases the loading ratio to around 0.75. Liquefying fuels such as paraffins are strong candidates for high regression fuels and subject of active research in Japan too. Nakagawa et al. in Tokai University employed EVA (Ethylene Vinyl Acetate) to modify viscosity of paraffin based fuels and investigated the effect of viscosity on regression rates. Wada et al. in Akita University employed LTP (Low melting ThermoPlastic) as another candidate of liquefying fuels and demonstrated high regression rates comparable to paraffin fuels. Hori et al. in JAXA/ISAS employed glycidylazide-poly(ethylene glycol) (GAP-PEG) copolymers as high regression rate fuels and modified the combustion characteristics by changing the PEG mixing ratio. Regression rate improvement by changing internal ballistics is another stream of research. The author proposed a new fuel configuration named "CAMUI" in 1998. CAMUI comes from an abbreviation of "cascaded multistage impinging-jet" meaning the distinctive flow field. A CAMUI type fuel grain consists of several cylindrical fuel blocks with two ports in axial direction. The port alignment shifts 90 degrees with each other to make jets out of ports impinge on the upstream end face of the downstream fuel block, resulting in intense heat transfer to the fuel. Yuasa et al. in Tokyo Metropolitan University employed swirling injection method and improved regression rates more than three times higher. However, regression rate distribution along the axis is not uniform due to the decay of the swirl strength. Aso et al. in Kyushu University employed multi-swirl injection to solve this problem. Combinations of swirling injection and paraffin based fuel have been tried and some results show very high regression rates exceeding ten times of conventional one. High fuel regression rates by new fuel, new internal ballistics, or combination of them require faster fuel-oxidizer mixing to maintain combustion efficiency. Nakagawa et al. succeeded to improve combustion efficiency of a paraffin-based fuel from 77% to 96% by a baffle plate. Another effective approach some researchers are trying is to use an aft-chamber to increase residence time. Better understanding of the new flow fields is necessary to reveal basic mechanisms of regression enhancement. Yuasa et al. visualized the combustion field in a swirling injection type motor. Nakagawa et al. observed boundary layer combustion of wax-based fuels. To understand detailed flow structures in swirling flow type hybrids, Sawada et al. (Tohoku Univ.), Teramoto et al. (Univ. of Tokyo), Shimada et al. (ISAS), and Tsuboi et al. (Kyushu Inst. Tech.) are trying to simulate the flow field numerically. Main challenges are turbulent reaction, stiffness due to low Mach number flow, fuel regression model, and other non-steady phenomena. Oshima et al. in Hokkaido University simulated CAMUI type flow fields and discussed correspondence relation between regression distribution of a burning surface and the vortex structure over the surface.

  • PDF

Quantitative Conductivity Estimation Error due to Statistical Noise in Complex $B_1{^+}$ Map (정량적 도전율측정의 오차와 $B_1{^+}$ map의 노이즈에 관한 분석)

  • Shin, Jaewook;Lee, Joonsung;Kim, Min-Oh;Choi, Narae;Seo, Jin Keun;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2014
  • Purpose : In-vivo conductivity reconstruction using transmit field ($B_1{^+}$) information of MRI was proposed. We assessed the accuracy of conductivity reconstruction in the presence of statistical noise in complex $B_1{^+}$ map and provided a parametric model of the conductivity-to-noise ratio value. Materials and Methods: The $B_1{^+}$ distribution was simulated for a cylindrical phantom model. By adding complex Gaussian noise to the simulated $B_1{^+}$ map, quantitative conductivity estimation error was evaluated. The quantitative evaluation process was repeated over several different parameters such as Larmor frequency, object radius and SNR of $B_1{^+}$ map. A parametric model for the conductivity-to-noise ratio was developed according to these various parameters. Results: According to the simulation results, conductivity estimation is more sensitive to statistical noise in $B_1{^+}$ phase than to noise in $B_1{^+}$ magnitude. The conductivity estimate of the object of interest does not depend on the external object surrounding it. The conductivity-to-noise ratio is proportional to the signal-to-noise ratio of the $B_1{^+}$ map, Larmor frequency, the conductivity value itself and the number of averaged pixels. To estimate accurate conductivity value of the targeted tissue, SNR of $B_1{^+}$ map and adequate filtering size have to be taken into account for conductivity reconstruction process. In addition, the simulation result was verified at 3T conventional MRI scanner. Conclusion: Through all these relationships, quantitative conductivity estimation error due to statistical noise in $B_1{^+}$ map is modeled. By using this model, further issues regarding filtering and reconstruction algorithms can be investigated for MREPT.

Planting Design Strategy for a Large-Scale Park Based on the Regional Ecological Characteristics - A Case of the Central Park in Gwangju, Korea - (지역의 생태적 특성을 반영한 대형공원의 식재계획 전략 - 광주광역시 중앙근린공원을 사례로 -)

  • Kim, Miyeun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.11-28
    • /
    • 2021
  • Due to its size and complex characteristics, it is not often to newly create a large park within an existing urban area. Also, there has been a lack of research on the planting design methodologies for a large park. This study aims to elucidate how ecological ideas can be applied to planting practice from a designer's perspective, and eventually suggest a planting design framework in the actual case, the Central Park in the City of Gwangju. This framework consists of spatial structure of planting area in order to connect and unite the separated green patches, to adapt to the changes of existing vegetation patterns, to maintain the visual continuity of landscape, and to organize the whole open space system. The framework can be provided for the spatial planning and planting design phase in which the landscape designer flexibly uses it with the design intentions as well as with an understanding of the physical, social, and aesthetic characteristics of the site. The significance of this approach is, first that it can maintain ecological and visual consistency of the both existing and introduced landscapes as a whole in spite of its intrinsic complexity and largeness, and second that it can help efficiently respond to the unexpected changes in the landscape. In the case study, comprehensive site analysis is conducted before developing the framework. In particular, wetlands and grasslands have been identified as potential wildlife habitat which critically determines the vegetation patterns of the green area. Accordingly, the lists of plant communities are presented along with the planting scheme for their shape, layout, and relations. The model of the plant community is developed responding to the structure of surrounding natural landscape. However, it is not designed to evolve to a specific plant community, but is rather a conceptual model of ecological potentials. Therefore, the application of the model has great flexibility by using other plant communities as an alternative as long as the characteristics of the communities are appropriate to the physical conditions. Even though this research provides valuable implications for landscape planning and design in the similar circumstances, there are several limitations to be overcome in the further research. First, there needs to be more sufficient field surveys on the wildlife habitats, which would help generate a more concrete planting model. Second, a landscape management plan should be included considering the condition of existing forest, in particular the afforested landscapes. Last, there is a lack of quantitative data for the models of some plant communities.

Analysis of Influential Factors on Wax Deposition for Flow Assurance in Subsea Oil Production System (해저 석유생산시스템에서 유동안정성 확보를 위한 왁스집적 영향요소 분석 연구)

  • Jung, Sun-Young;Kang, Pan-Sang;Lim, Jong-Se
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.662-669
    • /
    • 2015
  • There has been an increased interest in the mitigation of wax deposition because wax, which usually accumulates in subsea oil-production systems, interrupts stable oil production and significantly increases the cost. To guarantee a required oil flow by mitigating wax deposition, we need to obtain a reliable estimation of the wax deposition. In this research, we perform simulations to understand the major mechanisms that lead to wax deposition, namely molecular diffusion, shear stripping reduction, and aging. While the model variables (shear reduction multiplier, wax porosity, wax thermal conductivity, and molecular diffusion multiplier) can be measured experimentally, they have high uncertainty. We perform an analysis of these variables and the amount of water and gas in the multiphase flow to determine these effects on the behavior of wax deposition. Based on the results obtained during this study for a higher wax porosity and molecular diffusion multiplier, we were able to confirm the presence of thicker wax deposits. As the shear reduction multiplier decreased, the thickness of the wax deposits increased. As the amount of water increased, there was also an increase in the amount of wax deposits until 40% water cut and decreased. As the amount of gas increased, the amount of wax deposits increased because of the loss of the light hydrocarbon component in the liquid phase. The results of this study can be utilized to estimate the wax deposition behavior by comparing the experiment (or field) and simulation data.