• Title/Summary/Keyword: phase explosion

Search Result 100, Processing Time 0.023 seconds

DYNAMICAL EVOLUTION OF SUPERNOVA REMNANTS BREAKING THROUGH MOLECULAR CLOUDS

  • Cho, Wankee;Kim, Jongsoo;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.139-154
    • /
    • 2015
  • We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our onedimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

Slow Cook-Off Test and Evaluation for HTPE Insensitive Propellants (HTPE 둔감추진제 완속가열 시험평가)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Kim, Jun-Hyung;Lee, Do-Hyung;Min, Byung-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • This study was carried out to investigate the thermal decomposition and execute EIDS slow cook-off test for the propellant ingredients and 2 kinds of HTPE propellants. The thermal analysis of the propellant ingredients used in this study showed that the thermal stability of these materials decreases in the following order : AP > HTPE > AN > BuNENA. In addition, propellant HTPE 002 containing AN showed that an endothermic process at around $125^{\circ}C$ corresponding to the solid phase change(II$\rightarrow$I) of AN was followed by the exothermic process of BuNENA/AN mixture up to $200^{\circ}C$. In EIDS slow cook-off tests, HTPE 001 and HTPE 002 reacted at around $250^{\circ}C$ and $152^{\circ}C$ respectively, and both of them showed sudden temperature increase curves at $115^{\circ}C$. The critical temperatures, $T_c$, of thermal explosion for the propellants HTPE 001 and HTPE 002, were obtained from both the non-isothermal curves at various heating rates and Semenov's thermal explosion theory. Kissinger's method that was used to calculate $T_c$ was also employed to obtain the activation energies for thermal decompositions.

A Development of Consequence Analysis System for Combustible Materials Release Events Based on HTML5 Web (HTML5 웹 기반 가연성 물질 누출 피해영향평가 시스템 개발)

  • Lee, Ugwiyeon;Ji, Hyunmin;Oh, Jeongseok;Cho, Wansu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.39-60
    • /
    • 2019
  • Korea Gas Safety Corporation is developing consequence analysis system for combustible materials release events to enhance risk assessment technology and its efficiency. Unlike general consequence analysis programs, the final consequence area was implemented through ETA analysis based on API-581 standard, and a convenient user interface was constructed based on HTML5-based responsive web technology. In addition, a phase equilibrium module using third-order state equations (such as Peng-Robinson, SRK, and RK) and fugecity was implemented to analyze the mixture quality. Also. using the consequence analysis algorithm introduced in CCPS books and TNO Yellow Book, we developed material leak analysis module, fireball, pool fire, jet fire, flash fire, and vapor cloud explosion consequence assessment module. In addition, the conditions for calculating the safety distance were prepared with using the control values in the EIGA standard, PAC, and Bevi Reference Book.

The "open incubation model": deriving community-driven value and innovation in the incubation process

  • Xenia, Ziouvelou;Eri, Giannaka;Raimund, Brochler
    • World Technopolis Review
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • Globalization, increasing technological advancements and dynamic knowledge diffusion are moving our world closer together at a unique scale and pace. At the same time, our rapidly changing society is confronted with major challenges ranging from demographic to economic ones; challenges that necessitate highly innovative solutions, forcing us to reconsider the way that we actually innovate and create shared value. As such the linear, centralized innovation models of the past need to be replaced with new approaches; approaches that are based upon an open and collaborative, global network perspective where all innovation actors strategically network and collaborate, openly distribute their ideas and co-innovate/co-create in a global context utilizing our society's full innovation potential (Innovation 4.0 - Open Innovation 2.0). These emerging innovation paradigms create "an opportunity for a new entrepreneurial renaissance which can drive a Cambrian like explosion of sustainable wealth creation" (Curley 2013). Thus, in order to materialize this entrepreneurial renaissance, it is critical not only to value but also to actively employ this new innovation paradigms so as to derive community-driven shared value that stems from global innovation networks. This paper argues that there is a gap in existing business incubation model that needs to be filled, in that the innovation and entrepreneurship community cannot afford to ignore the emerging innovation paradigms and rely upon closed incubation models but has to adopt an "open incubation" (Ziouvelou 2013). The open incubation model is based on the principles of open innovation, crowdsourcing and co-creation of shared value and enables individual users and innovation stakeholders to strategically network, find collaborators and partners, co-create ideas and prototypes, share their ideas/prototypes and utilize the wisdom of the crowd to assess the value of these project ideas/prototypes, while at the same time find connections/partners, business and technical information, knowledge on start-up related topics, online tools, online content, open data and open educational material and most importantly access to capital and crowd-funding. By introducing a new incubation phase, namely the "interest phase", open incubation bridges the gap between entrepreneurial need and action and addresses the wantpreneurial needs during the innovation conception phase. In this context one such ecosystem that aligns fully with the open incubation model and theoretical approach, is the VOICE ecosystem. VOICE is an international, community-driven innovation and entrepreneurship ecosystem based on open innovation, crowdsourcing and co-creation principles that has no physical location as opposed to traditional business incubators. VOICE aims to tap into the collective intelligence of the crowd and turn their entrepreneurial interest or need into a collaborative project that will result into a prototype and to a successful "crowd-venture".

An Empirical Study on Evaluation of Performance Shaping Factors on AHP (AHP 기법을 이용한 수행영향인자 평가에 관한 연구)

  • Jung, Kyung-Hee;Byun, Seong-Nam;Kim, Jung-Ho;Heo, Eun-Mee;Park, Hong-Joon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.99-108
    • /
    • 2011
  • Almost all companies have paid much attention to the safety management ranging from maintenance to operation even at the stage of designing in order to prevent accidents, but fatal accidents continue to increase throughout the world. In particular, it is essential to systematically prevent such fatal accidents as fire, explosion or leakage of toxic gas at factories in order to not only protect the workers and neighbors but also prevent economic losses and environmental pollution. Though it is well known that accident probability is very low in NPP(Nuclear Power Plants), the reason why many researches are still being performed about the accidents is the results may be so severe. HRA is the main process to make preparation for possibility of human error in designing of the NPP. But those techniques have some problems and limitation as follows; the evaluation sensitivity of those techniques are out of date. And the evaluation of human error is not coupled with the design process. Additionally, the scope of the human error which has to be included in reliability assessment should be expanded. This work focuses on the coincidence of human error and mechanical failure for some important performance shaping factors to propose a method for improving safety effectively of the process industries. In order to apply in these purposes into the thesis, I found 63 critical Performance Shaping Factors of the eight dimensions throughout studies that I executed earlier. In this study, various analysis of opinion of specialists(Personal Factors, Training, Knowledge or Experience, Procedures and Documentation, Information, Communications, HMI, Workplace Design, Quality of Environment, Team Factors) and the guideline for construction of PSF were accomplished. The selected method was AHP which simplifies objective conclusions by maintaining consistency. This research focused on the implementation process of PSF to evaluate the process of PSF at each phase. As a result, we propose an evaluation model of PSF as a tool to find critical problem at each phase and improve on how to resolve the problems found at each phase. This evaluation model makes it possible to extraction of PSF succesfully by presenting the basis of assessment which will be used by enterprises to minimize the trial and error of construction process of PSF.

Identification of Hazards for Offshore Drilling through Accident Statistics and JSA-based Risk Reduction (사고 통계 분석을 통한 해양 시추작업 위험요소 제시 및 JSA 기반 위험저감 방안)

  • Noh, Hyonjeong;Kang, Kwangu;Park, Min-Bong;Kim, Hyungwoo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.865-874
    • /
    • 2020
  • Offshore drilling units have a very dangerous working conditions due to the harsh working environment of the ocean and the high possibility of fire or explosion. This study would identify the hazards that emerge from the marine environment in the operation and maintenance phase of offshore drilling units and show how these hazards can be reduced through risk assessment/management. Various risk reduction and management measures were first reviewed, and Job Safety Analysis (JSA) was selected as the risk assessment technique of this study. In order to understand the characteristics of offshore drilling operations, accident statistics of onshore and offshore drilling were analyzed and compared with each other, and major risk factors for offshore drilling were derived. The jobs in which offshore drilling accidents occur more frequently than onshore drilling was analyzed as the job of fastening, transporting and moving pipes and various materials. This result is due to the limited space of the ocean and the work environment that is prone to being shaken by wind, waves and ocean currents. Based on these statistical results, the job of picking and making up drill pipes was selected as a high-risk job, and JSA was performed as an example. A detailed safety check procedure is proposed so that workers can fully recognize the danger and perform work in a safe state that has been confirmed.

Analysis of Accelerated Aging Natural Ester Oil and Mineral Oil in Distributional Transformers (배전용 변압기에서의 고온열화와 열 사이클 열화에 따른 식물유와 광유의 특성 분석)

  • An, Jung-Sik;Choi, Sun-Ho;Bang, Jeong-Ju;Jung, Joong-Il;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1163-1168
    • /
    • 2011
  • Most transformers use insulating and cooling fluids derived from petroleum crude oil, but mineral oil has some possibility of environmental pollution and fire with explosion. vegetable oil fluids extracted from seed has superior biodegradation and fire-resistant properties including an exceptionally high fire point enhancing fire safety. In this study, it is aimed at the practicality of substituting natural ester dielectric fluid for mineral oil in liquid insulation system of transformers. As a rise in coil winding temperature has a direct influence on transformer life time, it is important to evaluate the temperature rise of coil winding in vegetable oil in comparison with mineral oil. Four transformers for the test are designed with 10KVA, 13.2KV, one phase unit. The temperature are directly measured in insulating oil of these transformers with the two sorts of natural ester and mineral oil dielectric fluid respectively. Experiment for aging carry out two means. First means remained $120^{\circ}C$ that transformer of mineral oil were operated at 185% load. Second means is that insulating oils of two natural ester and mineral oil were aged by thermal cycles repeating from $30^{\circ}C$ to $120^{\circ}C$. For the heating, Transformers were operated at 185% load. For the cooling, cooling system was operated in the chamber. Samples were analyzed at 42, 63, 93, 143, 190, 240 300cycles. Analysis contents are dielectric strength, total acid value. Mineral oils compared results of first means with results of second means. And compared two sort natural esters respectively with mineral oil in second means.

Fuel-Coolant Interaction Visualization Test for In-Vessel Corium Retention External Reactor Vessel Cooling (IVR-ERVC) Condition

  • Na, Young Su;Hong, Seong-Ho;Song, Jin Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1330-1337
    • /
    • 2016
  • A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

Intensive Monitoring Survey of Nearby Galaxies (IMSNG) : Constraints on the Progenitor System of a Type Ia Supernova SN 2019ein from Its Early Light Curve

  • Lim, Gu;Im, Myungshin;Kim, Dohyeong;Paek, Gregory S.H.;Choi, Changsu;Kim, Sophia;Hwang, Sungyong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2020
  • The progenitor of Type Ia supernovae (SNe Ia) is mainly believed to be a carbon/oxygen white dwarf (WD) with non-degenerate (single degenerate) or another WD companion (double degenerate). However, there is little observational evidence of their progenitor system. Recent studies suggest that shock-breakout cooling emission after the explosion can constrain the size of the progenitor system. To do so, we obtained a optical/Near-IR light curve of SN 2019ein, a normal but slightly sub-luminous type Ia supernova, from the very early phase using our high-cadence observation of Intensive Monitoring Survey of Nearby Galaxies (IMSNG). Assuming the expanding fireball model, the simple power-law fitting of the early part of the light curve gives power indices of 1.91 (B) and 2.09 (R) implying radioactive decay of 56Ni is the dominant energy source. By comparison with the expected light curve of the cooling emission, the early observation provides us an upper limit of the companion size of R∗≤1R⊙. This result suggests that we can exclude a large companion such as red giants, which is consistent with the previous study.

  • PDF

Contaminated Surfaces in an Urban Environment (도시환경에서 방사능오염 표면의 중요도 분석)

  • Hwang, Won-Tae;Jeong, Hyo-Joon;Kim, Eun-Han;Han, Moon-Hee;Ahn, Min-Ho;Kim, In-Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.148-153
    • /
    • 2011
  • EMRAS-2 (Environmental Modelling for RAdiation Safety, Phase 2) is an international comparison program, which is organized by the International Atomic Energy Agency (IAEA), in order to harmonize the modelling of radionuclide behavior in the environment. To do so, the urban contamination working group within EMRAS-2 has designed the hypothetical scenarios for a specified urban area. In this study, the importance of contaminated surfaces composing an urban environment was analyzed in terms of dose rate using METRO-K, which has been developed to take a Korean urban environment into account. The contribution of contaminated surfaces to exposure dose rate showed distinctly a great difference as a function of specified locations and time following a hypothetical event. Moreover, it showed a distinct difference according to the existence of precipitation, and its intensity. Therefore, if an urban area is contaminated radioactively by any unexpected incidents such as an accident of nuclear power plants or an explosion of radioactive dispersion devices (RDDs), appropriate measures should be taken with consideration of the type of surface composing the contaminated environment in order to minimize not only radiation-induced health detriment but also economic and social impacts.