• Title/Summary/Keyword: phase distortion

Search Result 808, Processing Time 0.025 seconds

Regeneration Inverter System for DC Traction with Hormonic Reduction Capability (고조파 저감 능력을 가진 직류전철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yong-Ki;Bang, Hyo-Jin;Song, Sang-Hun;Ahn, Kyu-Bok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.96-104
    • /
    • 2004
  • This paper proposes a dc power regenerating systems, which can generate the excessive dc power from dc bus line to ac supply in substations for traction system The proposed regeneration inverter system for dc traction can be used as both an inverter and an active power filter(APF). As an regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

Effects of High-harmonic Components on the Rayleigh Indices in Multi-mode Thermo-acoustic Combustion Instability

  • Song, Chang Geun;Yoon, Jisu;Yoon, Youngbin;Kim, Young Jin;Lee, Min Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.518-525
    • /
    • 2016
  • This paper presents the characteristics of non-fundamental multi-mode combustion instability and the effects of high-harmonic components on the Rayleigh criterion. Phenomenological observations of multi-harmonic-mode dynamic pressure waves regarding the intensity of harmonic components and the source of wave distortion have been explained by introducing examples of second- and third-order harmonics at various amplitudes. The amplitude and order of the harmonic components distorted the wave shapes, including the peak and the amplitude, of the dynamic pressure and heat release, and consequently the temporal Rayleigh index and its integrals. A cause-and-effect analysis was used to identify the root causes of the phase delay and the amplification of the Rayleigh index. From this analysis, the skewness of the dynamic pressure turned out to be a major source in determining whether multi-mode instability is driving or damping, as well as in optimizing the combustor design, such as the mixing length and the combustor length, to avoid unstable regions. The results can be used to minimize errors in predicting combustion instability in cases of high multi-mode combustion instability. In the future, the amount of research and the number of applications will increase because new fuels, such as fast-burning syngases, are prone to generating multi-mode instabilities.

Correction of Accelerogram in Frequency Domain (주파수영역에서의 가속도 기록 보정)

  • Park, Chang Ho;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.71-79
    • /
    • 1992
  • In general, the accelerogram of earthquake ground motion or the accelerogram obtained from dynamic tests contain various errors. In these errors of the accelerograms, there are instrumental errors(magnitude and phase distortion) due to the response characteristics of accelerometer and the digitizing error concentrated in low and high frequency components and random errors. Then, these errors may be detrimental to the results of data processing and dynamic analysis. An efficient method which can correct the errors of the accelerogram is proposed in this study. The correction of errors can be accomplished through four steps as followes ; 1) using an interpolation method a data form appropriate to the error correction is prepared, 2) low and high frequency errors of the accelerogram are removed by band-pass filter between prescribed frequency limits, 3) instrumental errors are corrected using dynamic equilibrium equation of the accelerometer, 4) velocity and displacement are obtained by integrating corrected accelerogram. Presently, infinite impulse response(IIR) filter and finite impulse response (FIR) filter are generally used as band-pass filter. In the proposed error correction procedure, the deficiencies of FIR filter and IIR filter are reduced and, using the properties of the differentiation and the integration of Fourier transform, the accuracy of instrument correction and integration is improved.

  • PDF

Performance Improvement of Frequency Synchronization in ATSC DTV System using Signal Power at Both Edges of Spectrum (ATSC DTV 시스템에서 스펙트럼 양끝의 신호전력을 이용한 주파수 동기 성능 개선)

  • Song Hyun Keun;Lee Joo Hyung;Kim Jae Moung;Eum Ho Min;Kim Seung Won
    • Journal of Broadcast Engineering
    • /
    • v.10 no.1 s.26
    • /
    • pp.31-42
    • /
    • 2005
  • ATSC DTV system uses FPLL block for acquiring the frequency synchronization. Because the FPLL uses only the pilot signal, the frequency convergence range becomes narrower and it takes a more time to acquire the frequency synchronization as the pilot is distorted. And the spectrum shape around the pilot makes an asymmetric convergence range between the positive frequency offset and the negative frequency offset. This paper proposes the algorithm that requires the Installation of the fitters at the both edges of a VSB spectrum and uses the signal power that passes these filters. The proposed algorithm complements the problems of the asymmetric convergence range and overcomes the performance degradation due to the distortion of a pilot level.

Development of MR Compatible Coaxial-slot Antenna for Microwave Hyperthermia (초고주파 가열치료를 위한 MR 호환 동축 슬롯 안테나의 개발)

  • Kim, T.H.;Chun, S.I.;Han, Y.H.;Kim, D.H.;Mun, C.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • MR compatible coaxial-slot antenna for microwave hyperthermia was developed while its structure and size of each part were determined by computer simulation using finite element method(FEM). Its local heating performance was evaluated using tissue-mimic phantom and swine muscles. 2% agarose gel mixed with 6mM/$\ell$ $MnCl_2$ as a biological tissue-mimic phantom was heated by the proposed antenna driven by a 2.45GHz microwave generator. The temperature changes of the phantom were monitored using multi-channel digital thermometer at the distance of 0mm, 5mm, 10mm and 20mm from the tip center of the antenna. Also muscle tissue of swine was heated for 2 and 5minutes with 50W and 30W of microwave generator powers, respectively, to evaluate the local heating performance of the antenna. MRI compatibility was also verified by acquiring MR images and MR temperature map. MR signals were acquired from the agarose gel phantom using $T2^*$ GRE sequence with 1.5T clinical MRI scanner(Signa Echospeed, GE, Milwaukee, WI, U.S.A.) at Pusan Paik Hospital and were transferred to PC in order to reconstruct MR images and temperature map using proton resonance frequency(PRF) method and laboratory-developed phase unwrapping algorithm. Authors found that it has no severe distortion due to the antenna inserted into the phantom. Finally, we can conclude that the suggested coaxial-slot antenna has an excellent local heating performance for both of tissue-mimic phantom and swine muscle, and it is compatible to 1.5T MRI scanner.

Study on Retrodirective Cross-eye Structure using Linear Phased Array Antenna (선형 위상배열 안테나를 이용한 역지향성 크로스아이 구조에 관한 연구)

  • Kim, In-seon;Park, Jintae;Kim, Ghiback;Park, Beomjun;Jang, Yeonsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • This study proposes a novel structure for the cross-eye, one of the representative jamming techniques of monopulse sensors. The proposed jammer tranceivers are composed of multi-channels with phased array antenna. We named this structure PRCJ(Phased array Retrodicetive Cross-eye Jammer). In this structure, formulas for calculating cross-eye gain and distance error are derived. We compare the properties of PRCJ with two-element retrodiredtive cross-eye jammer(TRCJ). PRCJ can achieve higher J/S because this structure can steer the spatially combined jamming signal in the direction of the incident monopulse signal. Because of the multiple channels in the phased array, it also increases the degree of freedom of channel matching. Finally, We preform a statistical analysis of the cross-eye gain according to the amplitude and phase errors. From this results, It has been found that PRCJ can get higher cross-eye gain than TRCJ.

Adaptive Hybrid Beamformer Suitable for Fast Fading (고속 페이딩에 적합한 적응 하이브리드 빔형성기)

  • Ahn Jang Hwan;Han Dong Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.49-59
    • /
    • 2005
  • An adaptive hybrid beamformer is proposed to improve the reception performance of the advanced television system committee (ATSC) digital television (DTV) in a mobile environment. Dynamic multipaths and Doppler shifts severely degrade the reception performance of the ATSC DTV receiver. Accordingly, a hybrid beamformer, called a Capon and least mean square (CLMS) beamformer, is presented that uses direction of arrival (DOA) information and the least mean square (LMS) beamforming algorithm. The proposed CLMS algerian efficiently removes dynamic multipaths and compensates for the phase distortion caused by Doppler shifts in mobile receivers. After the CLMS beamformer is operated, the subsequent use of an equalizer removes any residual multipath effects, thereby significantly improving the performance of DTV receivers. The performances of the proposed CLMS, Capon, and LMS beamformersare compared based on computer simulations. In addition, the overall performance of the CLMS beamformer followed by an equalizer is also considered.

Study on The Electromagnetism of Interior Permanent Magnet Synchronous Motor due to Field Weakening (매입형 영구자석 동기전동기의 약계자 제어에 따른 전자기적 특성 연구)

  • Kwon, Soon-O
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.254-260
    • /
    • 2013
  • This paper deals with electromagnetic characteristics of IPMSM (Interior Permanent Magnet Synchronous motor) caused by field weakening current control. In order to extend operation speed, field weakening current control is generally used in IPMSM operation. During field weakening, distorted linkage fluxes are resulted by saturation of core material. Therefore, distorted input voltage waveform is required for sinusoidal current input. As the current vector angle increases for field weakening, distortion of linkage flux and back-emf becomes significant. This situation is analyzed by 2-dimensional finite element analysis and verified by experiment. With the results, it is concluded that motor parameters, such as linkage flux by permanent magnet, phase resistance, d-q axis inductance, are insufficient for estimating required voltage for given speed especially in field weakening and additional considerations for increased harmonics of voltage are required.

Very High Linearity of High Power Amplifier by Reduction of $2^{nd}$, $3^{rd}$ Harmonics and Predistortion of $3^{rd}$ IMD (3차 혼변조 신호의 전치왜곡과 2, 3차 고조파 억제를 통한 고선형성 고출력 전력 증폭기에 관한 연구)

  • Lee, Chong-Min;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.50-54
    • /
    • 2011
  • In this article, the linearity of single power amplifier is improved by suppress $2^{nd}$ and $3^{rd}$ harmonics at output port of high power amplifier and by cancelling of $3^{rd}$ IMD. The matching network in order to suppress harmonics consists of metamaterial like the CRLH. The $2^{nd}$ and $3^{rd}$ harmonics are suppressed over 27 dBc, respectively. A phase of generated $3^{rd}$ IMD at output of DPA (drive power amplifier) has changed in order to offset the $3^{rd}$ IMD of HPA (high power amplifier). The harmonics of the proposed PAM suppress over 6 dB than single HPA. The PAM has a 36.98 dBm of the output power, 21.6 dB of the power gain and 29.4 % of the PAE. The harmonics is a -53 dBc about PAM. This result indicate that a harmonic level is lower 20 dB than reference power amplifier.