• Title/Summary/Keyword: phase change materials (PCM)

Search Result 100, Processing Time 0.032 seconds

PCM/Nylon6 복합사 염착특성

  • Lee, Jun-Hee;Kim, Hyung-Joo;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.35-35
    • /
    • 2011
  • Phase change material(PCM) has thermal energy storage and been attracted attention. Latent heat of the organic PCM can keep maintaining temperature when the change of outside energy conditions influence to PCM. Thus, many researchers have interested to thermal energy storage ability and investigated to applications such as thermal storage of solar energy, bioclimatic building, icebank, medical application, clothing industry and so on. Among the many applications, investigation of the PCM in clothing industry is also important because the people has interest functional factor called health-care in the clothing. In addition, PCM can give them mild environment condition such suitable temperature control or humidity. To fabrics, the PCM has various methods such as microcapsule, padding and modified cross-section formation(Sheath/core). Sheath core PCM fabric has a better benefit of durability than other method. However, PCM sheath/core spinning is difficult. In addition, dyeing property is important to use clothing industry due to visual images. In this study, we investigated dyeing properties of Nylon/PCM sheath/core fabrics. Especially, we observed the relation between dyeing property and PCM including ratio. Various temperature and pH conditions were also studied to optimize dyeing properties as acid dye.

  • PDF

Experimental Study on the Microencapsulated PCM as a Thermal Storage Medium (미립잠열재를 이용한 축열 특성에 관한 실험적 연구)

  • 이효진;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • Microencapsulated PCM particles are mixed with distilled water and utilized to evaluate its characteristics and performance as a thermal storage medium transporting heat. For the present study, tetradecane(C$_14H_30, T_m=5.5^{\circ}C$) is capsulated in the core with the melamine of its surface. The size of particles is well-controlled under 10${\mu}{\textrm}{m}$ in the way of in-situ polymerization with melamine-formaldehyde resin. For the experiment, the concentrations of slurries are prepared for 20wt%, 30wt%, and 40wt%. The results are compared with those of water and 100% tetradecane oil. The pure water and tetradecane start solidifying within 20 minutes after introducing cooling water into the thermal storage tank whose tank whose flow rates are varied by 125cc/min, 250cc/min, and 500cc/min. However, MicroPCM slurries are required relatively longer period of time for their phase change than pure phase change materials. That is, the entrained MicroPCM particles control its heat transfer in terms of natural convection and conducting to them.

  • PDF

Shape-Stabilized Phase Change Materials : Frozen Gels From Polypropylene and n-Paraffin for Latent Heat Storage

  • Ko, Jae-Wang;Son, Tae-Won
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2010.03a
    • /
    • pp.80-81
    • /
    • 2010
  • We prepared polymer-PCM gels such as prepared frozen gel from polypropylene and n-Paraffin for thermal storage and release materials, their basic properties and possible applications especially in latent heat storage. The preparation methods are used to melting method and absorption method respectively. The composition and properties of prepared frozen gels from polypropylene and n-Paraffin were observed by DSC, FT-IR spectra, ARES and Elemental analysis. We can prepare frozen gels in different temperature for latent heat storage materials as controlling composition of phase change material as well as using different incorporating phase change materials. These frozen gels can be used to latent heat storage materials for several applications.

  • PDF

Thin Film Deposition of Antimony Tellurides for Ge-Sb-Te Compounds

  • Han, Byeol;Kim, Yu-Jin;Park, Jae-Min;Mayangsari, Tirta R.;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.330.1-330.1
    • /
    • 2014
  • 개인용 노트북, 태블릿 PC, 핸드폰 기술 발전에 의해 언제 어디서나 데이터를 작성하고 기록하는 일들이 가능해졌다. 특히 cloud 시스템을 이용하여 데이터를 휴대기기에 직접 저장하지 않고 server에 기록하는 일들이 가능해짐에 따라 server 기기의 성능, server-room power 및 space 에 대한 관심이 증가하였다. Storage class memory (SCM) 이란 memory device와 storage device의 장점을 결합한 memory를 일컫는 기술로 현재 소형 디바이스 부분부터 점차 그 영역을 넓히고 있다. 그중 phase change material을 이용한 phase change memory (PCM) 기술이 가장 각광받고 있다. PCM의 경우 scaling됨에 의해 cell간의 열 간섭으로 인한 data 손실의 우려가 있어 cell의 면적을 최소화 하여 소자를 제작하여야 한다. 기존의 sputtering등의 PVD 방법으로는 한계가 있어 ALD 공정을 이용한 PCM에 대한 연구가 활발히 진행중이다. 특히 tellurium 원료기체로 silyl 화합물 [1]을 사용하여 주로 $Ge_2Sb_2Te_5$의 조성에 초점을 맞춰 진행되고 있으나, 세부 공정에 대한 기본적인 연구는 미비하다. 본 연구에서는 Ge-Sb-Te 3원계 박막을 형성하기 위한 Sb-Te 화합물의 증착 공정에 대한 연구를 수행하였다. 특히 원료기체로 Si이 없는 새로운 Te 원료기체를 이용하여 조성 조절을 하였고, 박막의 물성을 분석하였다. 또한 공정온도에 따른 박막의 물성 변화를 분석하였다.

  • PDF

Coloration approaches on sheath/core type nylon fibers having PCM particles

  • Kim, Hyung-Joo;Park, June-Min;Lee, A-Reum;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.70-70
    • /
    • 2012
  • Thermo-regulated textiles have been attracted more attention in medical textile application areas. Phase change materials, namely PCM, are substance with a high hear of fusion and can absorb a lot of energy before melting, which make the temperature remain constant during the phase changes. Herein, using nylon fibers having different PCM content were dyed and characterized to determine the coloration properties with PCM content ratio. The corresponding findings were discussed.

  • PDF

Cold Thermal Energy Storage Characteristics of Spherical PCM Capsule (상변화물질을 충진한 구형 캡슐의 축냉 특성)

  • Yun, Hong-Sun;Kwon, Jin-Kyung;Jeong, Hoon;Lee, Hyun-Dong;Kim, Young-Geon
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.303-308
    • /
    • 2008
  • The freezing characteristics of two kinds of phase change materials (PCM) encapsulated in a spherical container were investigated with various cooling air temperatures and velocities. The super cooling and solidification time of PCM were highly affected by cooling air temperature and velocity. The experimental equations are derived to express total solidification time of the PCM in terms of Nusselt number and dimensionless temperature.

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.

Development of Nanomodified Snow-Melting Concrete Using Low-Temperature Phase-Change Material Impregnated Lightweight Aggregate (저온 상변화 물질 함침 경량골재를 이용한 나노 개질 융설 콘크리트 개발)

  • Kyoung, Joo-Hyun;Kim, Sean-Mi;Hu, Jong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.787-792
    • /
    • 2022
  • In winter, the excessive use of deicing salt deteriorates concrete pavement durability. To reduce the amount of deicing salt used, phase-change materials (PCMs) potentially offer an alternative way to melt snow through their latent heat storage characteristics. In this research, thermal energy storage concrete was developed by using PCM-impregnated expanded clay as 50 % replacement to normal aggregate by volume. In addition, to improve the thermal efficiency of PCM lightweight aggregate (PCM-LWA)-incorporated concrete, multi-walled carbon nanotubes (MWCNTs) were incorporated in proportions of 0.10 %, 0.15 %, and 0.20 % by binder weight. Compressive strength testing and programmed thermal cycling were performed to evaluate the mechanical and thermal responses of the PCM-LWA concrete. Results showed a significant strength reduction of 54 % due to the PCM-LWA; however, the thermal performance of the PCM-LWA concrete was greatly improved with the addition of MWCNTs. Thermal test results showed that 0.10 % MWCNT-incorporated concrete had high thermal fatigue resistance as well as uniform heat flow, whereas specimens with 0.15 % and 0.20 % MWCNT content had a reduced thermal response due to supercooling when the ambient temperature was varied between -5℃ and 10℃.

A Study on Thermal Performance of Cement Mortar with PCM (PCM을 혼입한 시멘트 모르타르의 열적성능에 관한 연구)

  • Kim, Bo-Hyun;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.521-528
    • /
    • 2011
  • Recently, environmental concerns and issues have become great concerns for the public. Therefore, this study is conducted with the objective of preventing energy depletion and $CO_2$ emission. PCM (Phase Change Materials) having latent heat characteristic is mixed in mortar to find a proper mix proportion. Also, the mortar properties and performances as well as a melting point of PCM when applied to air conditioning and heating conditions in at building environments were obtained by performing experiments. Also, latent heat and heat transfer characteristics were obtained from experiments by test of thermal performance to formulate temperature gradient about amount of heat transfer of PCM content using the Fourier's thermal equation. The study results can be used in the application of PCM in buildings and expected effect of air conditioning and heating energy.

Experimental study for optimizing the thermal regulating system with phase change material on the photovoltaic panel (태양광패널 온도제어를 위한 PCM시스템 최적화에 관한 실험적 연구)

  • Lee, Hyo-Jin;Chun, Jong-Han
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.273-278
    • /
    • 2009
  • The experimental study is performed to investigate the optimum design of the system dissipating properly heat from the in-situ solar panel installed on site. For this purpose, six 12-Watts panels, which are set at the different conditions of the solar panels contained phase change material, changing the array of the aluminum fin and honeycomb at the back of the panel, are tested. PCM, which has $44^{\circ}C$ melting point, is chosen in this study. In order to enhance the thermal heat from the absorbed heat in PCM, finned aluminum plate is placed. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. As a result, the solar panel, which is combined with honeycomb and outward fins with PCM instead of placing the fine inward, is showing the best performance in terms of controling panel temperature and efficiency.

  • PDF