• 제목/요약/키워드: phase calibration

Search Result 502, Processing Time 0.026 seconds

Determination of Trace Mo(VI) in Seawater Samples by Ion Pair Formation and Solvent Extraction (이온쌍 형성-용매추출에 의한 해수 중 극미량 Mo(VI)의 정량)

  • Kim, Young-Sang;Nho, Seung-Gu;Choi, Jong-Moon
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.329-334
    • /
    • 1993
  • The formation of Mo(VI)-alizarin red S chelate ion its extraction into an organic solvent by ion-pairing for the separarive determination of trace Mo(VI) in natural water was applied in seawater samples. Removed Fe(III) and Zn(II), and Cu(II) by precipitating with anthranilic acid at pH 4.0 and 2.0, seawater 100mL was sampled in 250mL separatory funnel. After Mo(VI)-ARS chelate ion was formed by adding 0.01M alizarin red S solution 1.0mL to the water sample of pH 4.6, 0.6% aliquat-336 chloroform solution 10mL was added and the solution was vigorously shaked for about 30 seconds to form the ion-pair between Mo(VI)-ARS and aliquat-336 perfectly. The solution was stood for about 30 minutes. And the organic phase was taken for the absorbance measurement of the ion-pair at 520nm. The content of Mo(VI) was obtained from the standard calibration curve. Several extraction conditions such as pH, adding amounts of alizarin red S and aliquat-336, and shaking and standing times were optimized and the interferences and release of concomitant ions was also studied. This procedure was applied to the analysis of Eastern and Yellow seawaters. It could be confirmed from the recoveries of over 85% in samples spiked with a given amount of Mo(VI) that this method was also quantitative in the determination of trace Mo(VI) in a seawater.

  • PDF

Solvent Extraction of Trace Mo(VI) in Natural Water Samples by Chelation and Ion-pairing (킬레이트 및 이온쌍 형성을 이용한 자연수 중 극미량 Mo(VI)의 용매추출)

  • Kim, Young-Sang;Nho, Seung-Gu;Choi, Jong-Moon;Choi, Hee-Seon
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.289-296
    • /
    • 1993
  • The formation of Mo(VI)-alizarin red S chelate ion and its extraction into an organic solvent by ion-pairing were studied for the separative determination of trace Mo(VI) in natural water samples. Natural water 100mL was sampled in 250mL separatory funnel. After Mo(VI)-ARS chelate ion was formed by adding 0.01M alizarin red S solution 0.5mL to the water sample of pH 4.0, 0.2% aliquat-336 chloroform solution 10mL was added and the solution was vigorously shaked for about 30 seconds to from the ion-pair between Mo(VI)-ARS and aliquat-336, completely. The solution was stood for about 90 minutes. And the organic phase was taken for the absorbance measurement of the ion-pair at 520 nm. The content of Mo(VI) in sample was obtained from the standard calibration curve. Several extraction conditions such as pH, adding amounts of alizarin red S and aliquat-336, and shaking and standing times were optimized. This procedure was applied to the analysis of river and tap waters. It could be confirmed from the recoveries of over 99% in samples spiked with a given amount of Mo(VI) that this method was quantitiative in the determination of trace Mo(VI) in a natural water.

  • PDF

Simultaneous Analysis of Bangpungtongseong-san and Its Antioxidant Effect (방풍통성산의 동시분석 및 항산화 효능 연구)

  • Seo, Chang-Seob;Kim, Ohn Soon;Shin, Hyeun-Kyoo
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.133-143
    • /
    • 2013
  • Objectives : We carry out the simultaneous quantification for quality control of four components in Bangpungtongseong-san (BPTSS) sample. In addition, we assessed the antioxidant effects of BPTSS sample. Methods : The used column for separation and analysis of four compounds was Luna C18 column and column oven temperature was maintained at $40^{\circ}C$. The mobile phase for simultaneous determination consisted of two solvent systems, 1.0% acetic acid in water and 1.0% acetic acid in acetonitrile. High performance liquid chromatography-photodiode array (HPLC-PDA) method for analysis was performed at a flow rate of 1.0 mL/min with PDA detection at 254 and 280 nm. The injection volume was 10 ${\mu}L$. The antioxidant activities of BPTSS were evaluated by measuring free radical scavenging activities on 2,2'-Azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) and 1-1-diphenyl-2-picrylhydrazyl (DPPH). The inhibitory effects on low-density lipoprotein (LDL) oxidation were evaluated by the formation of thiobarbituric acid relative substances (TBARS) and relative electrophoretic mobility (REM). Results : Calibration curves were acquired with $r^2{\geq}0.9999$. The values of limit of detection (LOD) and quantification (LOQ) were 0.06-0.29 ${\mu}g/mL$ and 0.20-0.98 ${\mu}g/mL$, respectively. The amounts of geniposide, liquiritin, baicalin, and glycyrrhizin in BPTSS were 5.06, 7.33, 27.56, and 7.81 mg/g, respectively. The BPTSS showed the radical scavenging activity in a dose-dependent manner. The concentration required for 50% reduction (RC50) against ABTS and DPPH radicals were 72.51 ${\mu}g/mL$ and 128.49 ${\mu}g/mL$. Furthermore, GMGHT reduced the oxidation properties of LDL induced by CuSO4. Conclusions : The established HPLC-PDA method will be helpful to improve quality control of BPTSS. In addition, BPTSS has potentials as therapeutic agent on anti-atherosclerosis.

Bioequivalence Study of Toriem® Tablet to Motilium-M® Tablet (Domperidone Maleate 12.72 mg) Evaluated by Liquid Chromatography/Tandem Mass Spectrometry

  • Ryu, Ju-Hee;Choi, Sang-Jun;Lee, Myung-Jae;Lee, Jin-Sung;Kang, Jong-Min;Tak, Sung-Kwon;Seo, Ji-Hyung;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.65-71
    • /
    • 2009
  • The aim of the present study was to evaluate the bioequivalence of two domperidone maleate tablets, Motilium-$M^{(R)}$ Tablet (Janssen Korea Ltd., reference product) and $Toriem^{(R)}$ Tablet (Daewon Pharm. Co., Ltd., test product). Domperidone was extracted by liquid-liquid extraction using tert-butyl methyl ether and separated in less than 3 min on $C_{18}$ reverse-phase column using an isocratic elution. A tandem mass spectrometer, as detector, was used for quantitative analysis in positive mode by a multiple reaction monitoring mode to monitor the m/z $426.1{\rightarrow}119.1$ and the m/z $837.4{\rightarrow}158.2$ transitions for domperidone and the internal standard (roxithromycin), respectively. Calibration curves, from $0.05{\sim}50$ ng/mL of domperidone, showed correlation coefficients (r) higher than 0.9941. Intra day and inter day precision (C.V. %) for quality control were ranged from 10.04 to 16.09% and from 10.87 to 18.69%, respectively. The lower limit of quantification (LLOQ) of domperidone was 0.05 ng/mL. The method described is precise and sensitive and has been successfully applied to the study of bioequivalence of domperidone in 24 healthy Korean volunteers. Twenty-four healthy male Korean volunteers received a single dose of each medicine ($2{\times}12.72\;mg$ domperidone maleate) in a $2{\times}2$ crossover study. There was a one-week washout period between the doses. Plasma concentrations of domperidone were monitored for over a period of 24 hr after the administration. $AUC_{0-t}$ (the area under the plasma concentration-time curve) was calculated by the linear trapezoidal rule. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. The 90% confidence intervals for the log transformed data were within acceptable range of log 0.8 to log 1.25 (e.g., $log\;0.92{\sim}log\;1.05$ for $AUC_{0-t}$, $log\;0.81{\sim}log\;1.05$ for $C_{max}$). The major parameters, $AUC_{0-t}$ and $C_{max}$ met the criteria of KFDA for bioequivalence indicating that $Toriem^{(R)}$ tablet is bioequivalent to Motilium-$M^{(R)}$ tablet.

Some considerations for the determination of carbonyl compounds in air: Reaction characteristics of formaldehyde with 2.4-DNPH (대기 중 카보닐 계열 성분의 분석기법의 연구: 포름알데하이드와 DNPH의 반응 특성을 중심으로)

  • Hong, Y.J.;Kim, K.H.
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.43-50
    • /
    • 2005
  • A number of carbonyl compounds including formaldehyde and acetaldehyde are well known for their toxicity and irritancy. Hence, acquisition of both qualitative and quantitative tool for their analysis is essential to resolve issues associated with malodor or indoor pollution. Using HPLC/UV method, we examined various aspects involved in the measurements of formaldehyde in environmental samples. The results of our analysis indicated that its detection was made as low as 0.5 ppb (assuming 5 L of sample volume), while its precision was maintained near 2% in terms of relative standard error (RSE). When the stability of calibration was checked by variability of slope values obtained over long-term period (e.g., one month), its values were found to remain constantly with RSE values of 3%. It was also found that liquid-phase reaction between formaldehyde and DNPH proceed very slowly to attain equilibrium (one and half hour), while requiring adequate amount of DNPH to form their derivatives. The overall results of our study thus suggest that there are a number of factors to consider for the accurate analysis of formaldehyde in ambient air.

Microwave Digestion and Solid-Phase Extraction for Determination of Aluminum in Human Urine by Graphite Furnace Atomic Absorption Spectrometer (흑연로 원자흡수 분광법에 의한 사람 오줌 중 알루미늄의 정량을 위한 마이크로파 삭힘과 고체상 추출)

  • Kim, Young-Sang;Choi, Yoon-Seok
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.102-109
    • /
    • 2003
  • Microwave digestion and solid-state extraction were studied for determination of trace aluminum{Al(III)} in human urine samples. A mixed acid of nitric acid and hydrogen peroxide was added to urine samples, organic materials were destructed in a home microwave oven and dried in a drying oven. The dried residues were dissolved in a sulfuric acid solution. The solution was eluted through a XAD-4 resin column adsorbed with 8-hydroxyquinoline(Oxine, HQ). Al(III)-8-hydroxyquinolinate complex was formed in the column and eluted with 0.5 M nitric acid solution. The Al(III) eluted was determined by graphite atomic absorption spectrophotometry. Various experimental conditions of followings were investigated for the optimization : the type of acid to dissolve the residues, the amount of HQ adsorbed on the resin, the pH of sample solutions, the type and concentration of acid to elute the complex from column and so on. The contents of Al(III) in real samples were determinated by a calibration curve method. The recovery in standard spiked samples was 94~101% and the detection limit of this procedure was 0.05 ng/mL.

Development of LC-MS/MS Quantitation Method for Ethoxyquin in Fishery Products (수산물 중 에톡시퀸의 LC-MS/MS 정량분석법 개발)

  • Shin, Dasom;Chae, Young-Sik;Kang, Hui-Seung;Lee, Soo-Bin;Cho, Yoon-Jae;Cheon, So-Young;Jeong, Jiyoon;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.432-438
    • /
    • 2016
  • Ethoxyquin (EQ, 1,2-dihydro-6-ethoxy-2,2,4-trimethyl-quinoline) is quinoline-based antioxidant used in the animal feed and food industry to protect the raw materials and final products against oxidation. In recent years the use of synthetic antioxidants in fishmeal ingredients carry-over to farmed fish fillets has received increasing attention in food safety. This study was conducted to develop an analytical method to determine EQ in aquatic products. The analytes were confirmed and quantified via liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the positive ion mode using multiple reaction monitoring (MRM). The sample was extracted with 1 N HCl (in case of flatfish extracted with 1 N HCl containing 10% acetonitrile). Then, solid phase extraction (SPE) was used for the cleanup. Standard calibration curves presented linearity with the correlation coefficient ($r^2$) > 0.99, analyzed at 0.005-0.2 mg/kg concentration. The developed method was validated according to the Codex Alimentarius Commission (CAC) guideline. The limits of quantitation for EQ were 0.01 mg/kg. Average recoveries ranged from 81.3% to 107%. The repeatability of measurements, expressed as the coefficient of variation (CV, %), was below 10%. The analytical method was characterized with high accuracy and acceptable sensitivity to meet CODEX guideline requirements and would be applicable to analyze the EQ residue in aquatic products.

Validation of LC-MS/MS method for determination of ginsenoside Rg1 in human plasma (인체 혈장 중 Ginsenoside Rg1의 정량을 위한 LC-MS/MS 분석법 검증)

  • Kim, Yunjeong;Han, Song-Hee;Jeon, Ji-Young;Hwang, Min-Ho;Im, Yong-Jin;Lee, Sun Young;Chae, Soo-Wan;Kim, Min-Gul
    • Analytical Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • A sensitive and selective liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the investigation of the ginsenoside Rg1 in human plasma. After addition of internal standard (digoxin), plasma was diluted with acetone and methanol (80:20), the supernatant was concentrated and analyzed by LC-MS/MS. The optimal chromatographic separation was achieved on an Agilent Eclipse XDB-C18 column ($4.6{\times}150mm$, $5{\mu}m$) with a mobile phase of 0.1% formic acid in water and 0.1% formic acid in methanol at a flow rate of 0.9 mL/min gradient mode. The standard calibration curve for ginsenoside Rg1 was linear ($r^2=0.9995$) over the concentration range 1~500 ng/mL in human plasma. The intra- and inter-day precision over the concentration range of ginsenoside Rg1 was lower than 7.53% (correlation of variance, CV), and accuracy exceeded 98.28%. This LC-MS/MS assay of ginsenoside Rg1 in human plasma is applicable for quantifying in the pharmacokinetic study.

Development of Trans-Admittance Scanner (TAS) for Breast Cancer Detection (유방암 검출을 위한 생계 어드미턴스 스캐너의 개발)

  • 이정환;오동인;이재상;우응제;서진근;권오인
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.335-342
    • /
    • 2004
  • This paper describes a trans-admittance scanner for breast cancer detection. A FPGA-based sinusoidal waveform generator produces a constant voltage. The voltage is applied between a hand-held electrode and a scan probe placed on the breast. The scan probe contains an 8x8 array of electrodes that are kept at the ground potential. Multi-channel precision digital ammeters using the phase-sensitive demodulation technique were developed to measure the exit current from each electrode in the array. Different regions of the breast are scanned by moving the probe on the breast. We could get trans-admittance images of resistor and saline phantoms with an anomaly inside. The images provided the information on the depth and location of the anomaly. In future studies, we need to improve the accuracy through a better calibration method. We plan to test the scanner's ability to detect a cancer lesion inside the human breast.

A Study of the Temperature Dependency for Photocatalytic VOC Degradation Chamber Test Under UVLED Irradiations (UVLED 광원을 이용한 광촉매 VOC 제거 특성 평가시 온도에 따른 농도 변화에 관한 연구)

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.755-761
    • /
    • 2015
  • Photocatalytic VOCs removal test in gas phase is generally performed by placing the light source on the outside due to maintaining a constant temperature inside the test chamber. The distance between light source and photocatalysts is importantin the VOC degradation test since the intensity of light is rapidly decreased as the distance farther. Especially, for the choice of light source as UVLED, this issue is more critical because UVLED light source emits lots of heat and it is hard to measure the exact concentration of VOCs due to changed temperature in the test chamber. In this study, we modified VOC removal test chamber base on the protocol of air cleaner test and evaluated the efficiency of photocatalystunder UVLED irradiation. Photocatalystsof two different samples (commercial $TiO_2$ and the synthesized vanadium doped $TiO_2$) weretested for the p-xylene degradation in the closed chamber system and compared with each other in order to exclude any experimental uncertainties. During the VOC removal test, VOC concentrations were monitored and corrected at regular time intervals because the temperature in the chamber increases ${\sim}20^{\circ}C$ due tothe heat of UVLED. The results showed that theconversion ratio of p-xylene has 40~43% difference before and after the temperature correction. Based on those results, we conclude that the VOC concentration correction must be required for the VOC removal test in a closed chamber system under UVLED light source and obtained the corrected efficiencies of various photocatlysts.