• Title/Summary/Keyword: phagocytic function

Search Result 72, Processing Time 0.032 seconds

Effects of Samultang on Immune Function during the late stage of Pregnancy in BALB/c mice (사물탕이 임신 말기 생쥐의 면역능에 미치는 영향)

  • Yum, Jung-Yul;Eun, Jae-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.31 no.2
    • /
    • pp.142-148
    • /
    • 2000
  • The purpose of this research was to investigate effects of Samultang water extract (SMT) on cytokine production from immune cells during the late stage of pregnancy in BALB/c mice. SMT(500 mg/kg) was administered p.o. once a day for 7 days, and then thymocytes and peritoneal macrophages were separated. At the late stage of pregnant mice, the proliferation of thymocytes and the production of ${\gamma}-interferon$ in thymocytes were decreased as compared with normal group, but the production of interleukin-2 and interleukin-4 was increased. The production of tumor necrosis $factor-{\alpha}$, nitric oxide and phagocytic activity in peritoneal macrophage was increased as compared with normal group. At the late stage of pregnant mice administered with SMT, the production of interleukin-2 in thymocytes was decreased as compared with a pregnant group, but the proliferation of thymocytes, the production of ${\gamma}-interferon$ and interleukin-4 was increased. The production of tumor necrosis $factor-{\alpha}$ and nitric oxide in peritoneal macrophages were decreased as compared with a pregnant group, but phagocytic activity were increased. These results suggest that SMT has the regulative action on immune function of thymocytes and peritoneal macrophages at the late stage of pregnant mice.

  • PDF

Studies on immunomodulating Function of Components Separated from Platycodi Radix (길경의 면역조절 기능성에 관한 연구)

  • Bae, Man-Jong;Park, Mu-Hui;Son, Gyu-Mok
    • The Korean Journal of Food And Nutrition
    • /
    • v.9 no.1
    • /
    • pp.69-75
    • /
    • 1996
  • In order to research for compound of immunomodulatic and anti-allergic function. These experiments were conducted to investigated the effects of hot water extracts(PRWE) , ethanol extracts (PREE) and polysaccharide fraction extracts (PRPE) extracted from platycodi radix on immune response. The effect of these platycodi radix extracts on hemagglutinin titer(HA), hemalysin titer(HY), plaque forming cell(PFC), rosette forming cell (RFC) and phagocytosis was Investigated by using BALB / C mice. The results obtained from this study are as follows. Generally, the oral administration of extracts fractions for 10 days each other resulted in the enhanced HA and HY. In the experiment of PFC and RFC, the results of experimental groups which was given each samples compared to control group showed the enhanced level of activity such as PRPE 160% and 196% each other But PRWE and PREE decreased or wear not changed. When PREE, PRPE or PRWE was given to mice orally, PREE and PRPE significantly enhanced the phagocytic activity of peritoneal exudate cells(PEC), spleen cells(SC) and monolymphocytus cell(MC), about from 150% to 250%, but PRW was decreased.

  • PDF

Heat-Killed Lactobacillus plantarum KCTC 13314BP Enhances Phagocytic Activity and Immunomodulatory Effects via Activation of MAPK and STAT3 Pathways

  • Jeong, Minju;Kim, Jae Hwan;Yang, Hee;Kang, Shin Dal;Song, Seongbong;Lee, Deukbuhm;Lee, Ji Su;Park, Jung Han Yoon;Byun, Sanguine;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1248-1254
    • /
    • 2019
  • Identification of novel probiotic strains is of great interest in the field of functional foods. Specific strains of heat-killed bacteria have been reported to exert immunomodulatory effects. Herein, we investigated the immune-stimulatory function of heat-killed Lactobacillus plantarum KCTC 13314BP (LBP). Treatment with LBP significantly increased the production of $TNF-{\alpha}$ and IL-6 by macrophages. More importantly, LBP was able to enhance the phagocytic activity of macrophages against bacterial particles. Activation of p38, JNK, ERK, $NF-{\kappa}B$, and STAT3 was involved in the immunomodulatory function of LBP. LBP treatment significantly increased production of $TNF-{\alpha}$ by bone marrow-derived macrophages and splenocytes, further confirming the immunostimulatory effect of LBP in primary immune cells. Interestingly, the immunomodulatory effects of LBP were much stronger than those of Lactobacillus rhamnosus GG, a well-known probiotic strain. These results indicate that LBP can be a promising immune-enhancing functional food agent.

An Immune-Electron Microscopic Study for Cluster Designation on the Phagocytic Synovial Cells in the Knee Joint of the Human (인체 무릎관절 윤활포식세포 cluster designation 표지에 관한 면역전자현미경적 연구)

  • Lim, Hyoung-Soo;Cho, Kook-Hyeung;Kim, Yong-Wook;Park, Kyeong-Han;Hwang, Young-Il;Chang, Ka-Young;Hwang, Douk-Ho
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.173-183
    • /
    • 2000
  • This study was designed to observe the ultrastructural localization of synoviocytes, which are concerned with the function of phagocytic synovial cells (type A synoviocytes, macrophage-like synoviocytes), in the knee joint of the human for CD14 and CD105 by cryo-immune-electron microscopic technique. The synovium were dissected and fixed for two hours (in 4% paraformaldehyde and 0.1% glutaraldehyde mixture), and were immerged in 2.3 M sucrose and 20% PVP solution. Finally, they were cut with the cryoultramicrotome and labelled with primary antibodies (monoclonal mouse anti-human CD14, monoclonal mouse anti-human CD105 (endoglin) and secondary (donkey anti-mouse IgG) tagged with 6 nm colloidal gold particles. The tissues were observed under transmission electron microscope. This study was resulted as follows. 1. In the synovium of the human knee joint, CD14+ cells were identified. These cells showed phagocytic synovial cell's features. In the phagocytic synoviocyte, the distributions of CD14 were marked in the cytoplasm, around vacuoles, and in cytoplasmic process, but not detected inside of vacuoles. 2. In the synovium of the human knee joint, CD105+ cells were identified. These cells were recognized endothelial cells and phagocytic synovial cells. In the phagocytic synovial cells, the distributions of CD105 (endoglin) were marked in cytoplasic process, around vacuoles, and in cell membrane, but not detected inside of vacuoles. On the basis of above findings, it is obvious that phagocytic synovial cells were marked at CD 14 and CD 105, and might be play the role of activated macrophages or phagocytes in the synovial membrane.

  • PDF

A comparative study on chemical composition of total saponins extracted from fermented and white ginseng under the effect of macrophage phagocytotic function

  • Xiao, Dan;Xiu, Yang;Yue, Hao;Sun, Xiuli;Zhao, Huanxi;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, white ginseng was used as the raw material, which was fermented with Paecilomyces hepiali through solid culture medium, to produce ginsenosides with modified chemical composition. The characteristic chemical markers of the products thus produced were investigated using rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-QTOF-MS). Chemical profiling data were obtained, which were then subjected to multivariate statistical analysis for the systematic comparison of active ingredients in white ginseng and fermented ginseng to understand the beneficial properties of ginsenoside metabolites. In addition, the effects of these components on biological activity were investigated to understand the improvements in the phagocytic function of macrophages in zebrafish. According to the established RRLC-QTOF-MS chemical profiling, the contents in ginsenosides of high molecular weight, especially malonylated protopanaxadiol ginsenosides, were slightly reduced due to the fermentation, which were hydrolyzed into rare and minor ginsenosides. Moreover, the facilitation of macrophage phagocytic function in zebrafish following treatment with different ginseng extracts confirmed that the fermented ginseng is superior to white ginseng. Our results prove that there is a profound change in chemical constituents of ginsenosides during the fermentation process, which has a significant effect on the biological activity of these compounds.

Peroxiredoxin I deficiency attenuates phagocytic capacity of macrophage in clearance of the red blood cells damaged by oxidative stress

  • Han, Ying-Hao;Kwon, Tae-Ho;Kim, Sun-Uk;Ha, Hye-Lin;Lee, Tae-Hoon;Kim, Jin-Man;Jo, Eun-Kyeong;Kim, Bo-Yeon;Yoon, Do-Young;Yu, Dae-Yeul
    • BMB Reports
    • /
    • v.45 no.10
    • /
    • pp.560-564
    • /
    • 2012
  • The role of peroxiredoxin (Prx) I as an erythrocyte antioxidant defense in red blood cells (RBCs) is controversial. Here we investigated the function of Prx I by using Prx $I^{-/-}$ and Prx I/$II^{-/-}$ mice. Prx $I^{-/-}$ mice exhibited a normal blood profile. However, Prx I/$II^{-/-}$ mice showed more significantly increased Heinz body formation as compared with Prx $II^{-/-}$ mice. The clearance rate of Heinz body-containing RBCs in Prx $I^{-/-}$ mice decreased significantly through the treatment of aniline hydrochloride (AH) compared with wild-type mice. Prx I deficiency decreased the phagocytic capacity of macrophage in clearing Heinz body-containing RBCs. Our data demonstrate that Prx I deficiency did not cause hemolytic anemia, but showed that further increased hemolytic anemia symptoms in Prx $II^{-/-}$ mice by attenuating phagocytic capacity of macrophage in oxidative stress damaged RBCs, suggesting a novel role of Prx I in phagocytosis of macrophage.

Effects of Herba, Radix, Fructus-xanthii Extract on the Immunities against infections Diseases and Tumors (창이초(蒼耳草)의 약용부위별(藥用部位別) 추출물이 항감염(抗感炎) 및 항종양(抗腫瘍) 면역반응(免疫反應)에 미치는 영향)

  • Cho, Nam-Zoon;Song, Ho-Joon;Shin, Min-Kyo
    • The Journal of Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.420-438
    • /
    • 1998
  • Herba Xanthii(HX), Radix Xantluii(RX) and Fructus Xanthii(FX) is one of the oriental medicine that has been used for the treatment of such infectious diseases and tumors. However, the mechanism of the drug is not investigated much. This study was done to know the effects of HX, RX and FX extract on the such innate immunities as phagocytic function and reactive radical formtions from phagocytes and the such acquired immunities as humoral and cell-mediated immunities. The followings are the results obtained from this study: 1. HX2 and FX1 groups increases the in vivo phagocytic activity of mononuclear phagocytes. 2. HXB, RXB, RXC, FXB and FXC groups increase the in vitro phagocytic activities. 3. RXB group stimulated the macrophages to produce nitric oxide in the presence of $interferon-{\gamma}$ $(IFN-{\gamma})$. 4. HX and RX whole groups increased the luminol-amplified reactive oxygen intermediate production in vivo. 5. HX whole and RX1, FX2 groups increased the lucigenin-amplified reactive oxygen intennediate production in vivo. 6. HXC group only increased the luminol-amplified reactive oxygen intermediate production in vitro. 7. HXB, FXB and FXC groups increased the lucigenin-amplified reactive oxygen intermediate production in vitro. 8. HX2, RX1 and FX whole groups increased the hemolysin formations from B cells. 9. HX, RX and FX whole groups significantly increased the rosette forming cells from the spleen. 10. HX, RX and FX whole groups significantly decreased the delayed-type hypersensitivity measured by footpad swelling. The above results demonstrate that HX, RX and FX has enhancing effects on innate immunity selectively and decreasing effects on delayed-type hypersensitivity of cell-mediated immunity according to medicinal part and diluted condition. This immunomodulating effects of HX, RX and FX might be responsible for the treatment of immune-mediated disorders.

  • PDF

Tetrachloroauric Acid Depresses the Activation Processes of Phagocytic Cells

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.377-384
    • /
    • 1998
  • Gold compounds depress phagocytic cell responses, including chemotaxis, and respiratory burst. However, the effects of gold compounds on the function of phagocytic cells are variable according to the preparation of medicine. In this study, effect of tetrachloroauric acid on activated neutrophil responses, including respiratory burst, lysosomal enzyme release and change of intracellular $Ca^{2+}$ level and on the synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by macrophages was studied. This study further examines how gold compounds affect the activation processes. The respiratory burst stimulated by complement C5a, degraded IgG and PMA in neutrophils was inhibited by tetrachloroauric acid. In contrast to C5a and degraded IgG, PMA-stimulated superoxide production was weakly inhibited by tetrachloroauric acid. Staurosporine, genistein, EGTA and verapamil inhibited superoxide and $H_2O_2$ production caused by C5a and degraded IgG. PMA-stimulated superoxide production was inhibited by staurosporine but was not affected by genistein. Tetrachloroauric acid, genistein, EGTA and verapamil inhibited the release of acid phosphatase and myeloperoxidase, while the effect of staurosporine was not detected. The synthesis of interleukin-8 and granulocyte-macrophage colony stimulating factor by $interleukin-1{\beta}$ in macrophages was inhibited by tetrachloroauric acid. Preincubation with tetrachloroauric acid, genistein, EGTA and verapamil, the elevation of [$Ca^{2+}_i$] evoked by C5a was inhibited. Store-regulated $Ca^{2+}$ entry in thapsigargin-pretreated neutrophils was decreased by the addition of tetrachloroauric acid and genistein. The effect of staurosporine on intracellular $Ca^{2+}$ mobilization was not observed. In conclusion, tetrachloroauric acid may suppress neutrophil responses through its inhibitory action on elevation of intracellular $Ca^{2+}$ level and protein kinase C. It might exhibit an inhibitory effect on the action of protein tyrosine kinase. Tetrachloroauric acid depresses cytokine production by macrophages.

  • PDF

Sulfatase 1 and sulfatase 2 as novel regulators of macrophage antigen presentation and phagocytosis

  • Kim, Hyun-Je;Kim, Hee-Sun;Hong, Young-Hoon
    • Journal of Yeungnam Medical Science
    • /
    • v.38 no.4
    • /
    • pp.326-336
    • /
    • 2021
  • Background: Sulfation of heparan sulfate proteoglycans (HSPGs) is critical for the binding and signaling of ligands that mediate inflammation. Extracellular 6-O-endosulfatases regulate posttranslational sulfation levels and patterns of HSPGs. In this study, extracellular 6-O-endosulfatases, sulfatase (Sulf)-1 and Sulf-2, were evaluated for their expression and function in inflammatory cells and tissues. Methods: Harvested human peripheral blood mononuclear cells were treated with phytohemagglutinin and lipopolysaccharide, and murine peritoneal macrophages were stimulated with interleukin (IL)-1β for the evaluation of Sulf-1 and Sulf-2 expression. Sulf expression in inflammatory cells was examined in the human rheumatoid arthritis (RA) synovium by immunofluorescence staining. The antigen presentation and phagocytic activities of macrophages were compared according to the expression state of Sulfs. Sulfs-knockdown macrophages and Sulfs-overexpressing macrophages were generated using small interfering RNAs and pcDNA3.1 plasmids for Sulf-1 and Sulf-2, respectively. Results: Lymphocytes and monocytes showed weak Sulf expression, which remained unaffected by IL-1β. However, peritoneal macrophages showed increased expression of Sulfs upon stimulation with IL-1β. In human RA synovium, two-colored double immunofluorescent staining of Sulfs and CD68 revealed active upregulation of Sulfs in macrophages of inflamed tissues, but not in lymphocytes of lymphoid follicles. Macrophages are professional antigen-presenting cells. The antigen presentation and phagocytic activities of macrophages were dependent on the level of Sulf expression, suppressed in Sulfs-knockdown macrophages, and enhanced in Sulfs-overexpressing macrophages. Conclusion: The results demonstrate that upregulation of Sulfs in macrophages occurs in response to inflammation, and Sulfs actively regulate the antigen presentation and phagocytic activities of macrophages as novel immune regulators.