• Title/Summary/Keyword: phagocytic activities

Search Result 96, Processing Time 0.027 seconds

In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components

  • Baek, Kwang-Soo;Yi, Young-Su;Son, Young-Jin;Yoo, Sulgi;Sung, Nak Yoon;Kim, Yong;Hong, Sungyoul;Aravinthan, Adithan;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.437-444
    • /
    • 2016
  • Background: Although Korean Red Ginseng (KRG) has been traditionally used for a long time, its anti-inflammatory role and underlying molecular and cellular mechanisms have been poorly understood. In this study, the anti-inflammatory roles of KRG-derived components, namely, water extract (KRG-WE), saponin fraction (KRG-SF), and nonsaponin fraction (KRG-NSF), were investigated. Methods: To check saponin levels in the test fractions, KRG-WE, KRG-NSF, and KRG-SF were analyzed using high-performance liquid chromatography. The anti-inflammatory roles and underlying cellular and molecular mechanisms of these components were investigated using a macrophage-like cell line (RAW264.7 cells) and an acute gastritis model in mice. Results: Of the tested fractions, KGR-SF (but not KRG-NSF and KRG-WE) markedly inhibited the viability of RAW264.7 cells, and splenocytes at more than 500 mg/mL significantly suppressed NO production at $100{\mu}g/mL$, diminished mRNA expression of inflammatory genes such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interferon-${\beta}$ at $200{\mu}g/mL$, and completely blocked phagocytic uptake by RAW264.7 cells. All three fractions suppressed luciferase activity triggered by interferon regulatory factor 3 (IRF3), but not that triggered by activator protein-1 and nuclear factor-kappa B. Phospho-IRF3 and phospho-TBK1 were simultaneously decreased in KRG-SF. Interestingly, all these fractions, when orally administered, clearly ameliorated the symptoms of gastric ulcer in HCl/ethanol-induced gastritis mice. Conclusion: These results suggest that KRG-WE, KRG-NSF, and KRG-SF might have anti-inflammatory properties, mostly because of the suppression of the IRF3 pathway.

Korean Mistletoe Viscum album coloratum Induces Specific and Non-Specific Immune Responses in Japanese Eel Anguilla japonica

  • Choi, Sang-Hoon;Rhow, Jin-Goo;Choi, Min-Soon;Park, Sung-Woo;Park, Kwan-Ha;Yoon, Jong-Man;Park, Gyung-Il
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • Effects of Korean mistletoe extracts (KM-110), Viscum album coloratum on the specific and non-specific immune responses of Japanese eel Anguilla japonica were examined. The optimal concentration not showing toxicity of KM-110 was determined to $30-40{\mu}g/ml$ in vitro and $100{\mu}g$/100 g of fish in vivo. Even $1000{\mu}g$ of KM-110/100 g of fish did not show any clinical problem in fish though the levels of toxic parameters were slightly increased. In terms of antibody production, KM-110 significantly elicited more antibody production than FCA or $\beta$-glucan. $\beta$-glucan plus KM-110 group synergistically enhanced antibody production. There was no significant difference between KM-110 and KM-110 plus $\beta$-glucan group. The ROI production by head kidney (HK) leucocytes of eel injected with 500 or $1000{\mu}g$ KM-110 was significantly (P<0.05) enhanced than the control and FCA-treated group. Maximum increase in the NBT reduction value was observed in $1000{\mu}g$ KM-110 group but no significant difference was found between 500 and $1000{\mu}g$ KM group. The level of serum lysozyme activity was significantly (P<0.05) higher in the 500 and $1000{\mu}g$ KM-110- or FCA-treated group than in the control and $200{\mu}g$ KM-110 group. The phagocytic activities of HK leucocytes isolated from eel injected with 500 and $1000{\mu}g$ KM-110 were significantly (P<0.05) higher than $200{\mu}g$ KM-110 and PBS-injected control group. Korean mistletoe appeared to be a good activator of the specific and non-specific immune responses of Japanese eel.

NMAAP1 Expressed in BCG-Activated Macrophage Promotes M1 Macrophage Polarization

  • Liu, Qihui;Tian, Yuan;Zhao, Xiangfeng;Jing, Haifeng;Xie, Qi;Li, Peng;Li, Dong;Yan, Dongmei;Zhu, Xun
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.886-894
    • /
    • 2015
  • Macrophages are divided into two subpopulations: classically activated macrophages (M1) and alternatively activated macrophages (M2). BCG (Bacilli Calmette-$Gu{\acute{e}}rin$) activates disabled $na{\ddot{i}}ve$ macrophages to M1 macrophages, which act as inflammatory, microbicidal and tumoricidal cells through cell-cell contact and/or the release of soluble factors. Various transcription factors and signaling pathways are involved in the regulation of macrophage activation and polarization. We discovered that BCG-activated macrophages (BAM) expressed a new molecule, and we named it Novel Macrophage Activated Associated Protein 1 (NMAAP1). 1 The current study found that the overexpression of NMAAP1 in macrophages results in M1 polarization with increased expression levels of M1 genes, such as inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-${\alpha}$), Interleukin 6 (IL-6), Interleukin 12 (IL-12), Monocyte chemoattractant protein-1 (MCP-1) and Interleukin-1 beta (IL-$1{\beta}$), and decreased expression of some M2 genes, such as Kruppel-like factor 4 (KLF4) and suppressor of cytokine signaling 1 (SOCS1), but not other M2 genes, including arginase-1 (Arg-1), Interleukin (IL-10), transforming growth factor beta (TGF-${\beta}$) and found in inflammatory zone 1 (Fizz1). Moreover, NMAAP1 overexpression in the RAW264.7 cell line increased cytotoxicity against MCA207 tumor cells, which depends on increased inflammatory cytokines rather than cell-cell contact. NMAAP1 also substantially enhanced the phagocytic ability of macrophages, which implies that NMAAP1 promoted macrophage adhesive and clearance activities. Our results indicate that NMAAP1 is an essential molecule that modulates macrophages phenotype and plays an important role in macrophage tumoricidal functions.

Some In-Vitro and In-Vivo Biological Activities of Hot Water Extracts from Fruit Body and Cultured Mycelium of Hericium erinaceum (Hericium erinaceum 균사체와 자실체 열수 추출물의 몇몇 In-Vitro 및 In-Vivo 생물활성)

  • Jung, Jae-Hyun;Lee, Kwang-Ho;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2007
  • The water-soluble materials extracted from fruit bodies and mycelium of H. erinaceum were prepared. In-vitro anticancer activities on cancer cells and In-vivo proliferation effect on mouse peritoneal exudate cell and spleen cell of samples were investigated. Also, nitric oxide (NO) generation of peritoneal exudate cell, IL-2 production capacity of spleen cells and phagocytic activity of peritoneal macrophages were examined. The water extracts of H. erinaceum suppressed the proliferation of cancer cell (HeLa, Raw264.7, Jurkat, KATO3, EL4, LyD9) with concentration-dependent. The water extract from fruit body showed better suppression effect than that from mycelium in most of cancer cells used. The anticancer effect of water extract of fruits body in the range of 0.01 and 10 mg/ml for Raw 264.7 and EL4 cell lines were the same as the Taxol with one thousandth equivalent of fruit body concentration. Water extracts of fruit body and liquid-cultured products of H. erinaceum induced nitric oxide (NO) generation of peritoneal exudate cell and increased NO generation by stimulus of lipopolysaccharide. Water extracts alone did not induce the proliferation and IL-2 production capacity of spleen cells. However, spleen's proliferation and IL-2 production were induced significantly by the addition of lipopolysaccharide and Con A (concanavalin A) or Con A alone, and the effectiveness of mycelium extract with water were more active than those from fruit body.

Chemical Properties and Immuno-Stimulating Activities of Crude Polysaccharides from Enzyme Digests of Tea Leaves (녹차 효소 처리 다당의 화학적 특성 및 면역증진 활성)

  • Park, Hye-Ryung;Suh, Hyung Joo;Yu, Kwang-Won;Kim, Tae Young;Shin, Kwang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.664-672
    • /
    • 2015
  • In order to develop new immuno-stimulating ingredients from mature leaves of green tea, crude polysaccharides were isolated from pectinase digests of tea leaves (green tea enzyme digestion, GTE-0), after which their immuno-stimulating activities and chemical properties were examined. GTE-0 mainly contained neutral sugars (54.9%) such as glucose (14.2%), arabinose (12.2%), rhamnose (11.1%), and galacturonic acid (45.1%), which are characteristic of pectic polysaccharides. The anti-complementary activity of GTE-0 was similar to that of polysaccharide K (used as positive control). Number of morphologically activated macrophages was significantly increased in the GTE-0-treated group. GTE-0 significantly augmented $H_2O_2$ and reactive oxygen species production by murine peritoneal macrophage cells in a dose-dependent manner, whereas production of nitric oxide showed the highest activity at a dose of $100{\mu}g/mL$ among all tested concentrations. Murine peritoneal macrophages stimulated with GTE-0 showed enhanced production of various cytokines such as interleukin (IL)-6, IL-12, and tumor necrosis factors-${\alpha}$ in a dose-dependent manner. Further, GTE-0 induced higher phagocytic activity in a dose-dependent manner. In ex vivo assay for cytolytic activity of murine peritoneal macrophages, GTE-0-treated group showed significantly higher activity compared to the untreated group at an effector-to-target cell ratio of 20. The above results lead us to conclude that polysaccharides from leaves of green tea have a potent immuno-stimulating effect on murine peritoneal macrophage cells.

Study on IL -8 Expression in Peripheral Blood Monocytes (말초 혈액 단핵구에서 IL-8 발현에 관한 연구)

  • Kim, Jae-Yeol;Lee, Jae-Cheol;Kang, Min-Jong;Park, Jae-Seok;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Lee, Jae-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.5
    • /
    • pp.703-712
    • /
    • 1995
  • Background: Peripheral blood monocytes are important immune effector cells that play a fundamental role in cellular immunity. In addition to their antigen-presenting and phagocytic activities, monocytes/macrophage produce a vast array of regulatory and chemotactic cytokines. Interleukin-8(IL-8), a potent neutrophil-activating and chemotactic peptide, is produced in large quantities by mononuclear phagocytes and may be an important mediator of local and systemic inflammation. Overexpression by IL-8 of such inflammation may be an important step of tissue injury frequently seen in inflammatory reaction. So it could be hypothesized that the agents which block the production of IL-8 can decrease the inflammatory reaction and tissue injury. To evaluate this, we described the effect of Dexamethasone, $PGE_2$, Indomethacin and Interferon-$\gamma$(IFN-$\gamma$) on IL-8 mRNA and protein expression from LPS-stimulated human peripheral blood monocytes(PBMC). Method: PBMC was isolated from healthy volunteers. To evaluate the effect of Dexamethasone, $PGE_2$ & Indomethacin, these drug were treated for 1 hour before and after LPS stimulation and IFN-$\gamma$ was only treated I hour before the LPS stimulation. Northern blot analysis for IL-8 mRNA and ELISA for immunoreactive IL-8 protein in culture supernatant were performed. We repeated above experiment three times for Northern blot analysis and two times for ELISA and got the same result. Results: 1) Pre- and post-treatment of Dexamethasone suppressed both the LPS stimulated IL-8 mRNA expression and IL-8 protein release in PBMC. 2) IFN-$\gamma$ pre-treatment suppressed the IL-8 mRNA expression and IL-8 protein release in unstimulated cells. 3) In LPS stimulated cells, IFN-$\gamma$ suppressed the IL-8 mRNA expression but IL-8 protein release suppression was not observed. 4) $PGE_2$ and Indomethacin exert no effect on the LPS-stimulated IL-8 mRNA and protein expression in concentration used in this experiment ($PGE_2;10^{-6}M$, Indomethacin; $10{\mu}M$). Conclusion: One of the mechanism of antiinflammatory action of Dexamethasone can be explained by the suppressing effect of IL-8 production in some extent and by this antiinflammatory effect, dexamethasone can be used to suppress local and systemic inflammation mediated by IL-8.

  • PDF