• Title/Summary/Keyword: petroleum oil

Search Result 667, Processing Time 0.02 seconds

Study on the Lubricity Characteristics of Bio-heavy Oil for Power Generation by Various feedstocks (다양한 원료에 따른 발전용 바이오중유의 윤활 특성 연구)

  • Kim, Jae-Kon;Jang, Eun-Jung;Jeon, Cheol-Hwan;Hwang, In-Ha;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.985-994
    • /
    • 2018
  • Bio-heavy oil for power generation is a product made by mixing animal fat, vegetable oil and fatty acid methyl ester or its residues and is being used as steam heavy fuel(B-C) for power generation in Korea. However, if the fuel supply system of the fuel pump, the flow pump, the injector, etc., which is transferred to the boiler of the generator due to the composition of the raw material of the bio-heavy oi, causes abrasive wear, it can cause serious damage. Therefore, this study evaluates the fuel characteristics and lubricity properties of various raw materials of bio-heavy oil for power generation, and suggests fuel composition of biofuel for power generation to reduce frictional wear of generator. The average value of lubricity (HFRR abrasion) for bio-heavy oil feedstocks for power generation is $137{\mu}m$, and it varies from $60{\mu}m$ to $214{\mu}m$ depending on the raw materials. The order of lubricity is Oleo pitch> BD pitch> CNSL> Animal fat> RBDPO> PAO> Dark oil> Food waste oil. The average lubricity for the five bio-heavy oil samples is $151{\mu}m$ and the distribution is $101{\mu}m$ to $185{\mu}m$. The order of lubricity is Fuel 1> Fuel 3> Fuel 4> Fuel 2> Fuel 5. Bio-heavy oil samples (average $151{\mu}m$) show lower lubricity than heavy oil C ($128{\mu}m$). It is believed that bio-heavy oil for power generation is composed of fatty acid material, which is lower in paraffin and aromatics content than heavy oil(B-C) and has a low viscosity and high acid value, resulting in inhibition of the formation of lubricating film by acidic component. Therefore, in order to reduce friction and abrasion, it is expected to increase the lubrication of fuel when it contains more than 60% Oleo pitch and BD pitch as raw materials of bio-heavy oil for power generation.

Study on free and bond glycerines in Biodiesel from PKO(Palm Kernel Oil) and coconut oil (PKO 및 코코넛유래 바이오디젤 중 글리세린함량 분석 방법 개선 연구)

  • Lee, Don-Min;Park, Chun-Kyu;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.348-361
    • /
    • 2015
  • To reduce the effects of greenhouse gas (GHG) emissions, the government has announced the special platform of technologies as parts of an effort to minimize global climate change, and the government distributed biodiesel since 2006 as the further efforts. Although there are some debates about some quality specifications and unbalanced of source (44% from palm oil), more than 400kton/year of biodiesel was produced in 2013. Moreover the amounts will be increased when the RFS is activated. To solve the unbalanced situation and to achieve the diversity of feeds, it is essential that many researches should be considered. Especially, free and bond glycerines are one of the important properties seriously affected to the combustion system in vehicle & cold properties. Previous method (KS M 2412) couldn't cover the biodiesel derived from lauric oil($C_{12:0}$) such as PKO (Palm Kernel Oil), Coconut oil because those compositions are lighter than other conventional biodiesel sources. In this study, we review the existed method and figure out the factors should improve to analysis the glycerine from PKO and Coconut oil biodiesel. Modifying the analysis conditions to enhance the resolution and change the internal standards to avoid the overlapped- peaks between Capric acid ME ($C_{10:0}$) and standard#1(1,2,4-butantriol). From this revised method, we could solve the restrictions of previous methods. And check the possibility of new method to analyze the glycerine in biodiesel regardless of sources.

Oxidation Characteristic Changes in Insulation Oil Depending upon Storage Environments and Oil Resources (저장 환경 및 원료에 따른 전기절연유 산화특성 연구)

  • Lee, Don-Min;Park, Cheon-Kyu;Ha, Jong-Han;Lee, Bong-Hee
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.495-501
    • /
    • 2016
  • Mineral oil has been widely used as an insulating oil for electrical transformers for a long time, but the necessity of employing new insulation oil such as vegetable oil has been increased due to urgent needs for the biodegradability when it leaks and also for the thermal stability at a higher operation temperature. Although specific periods are required between the production and consumption, there are still short of the data to prove the insulation oils' storage stability depending upon various circumstances and their resources. Thus, this paper demonstrates the insulation oils' oxidation characteristics of both mineral and vegetable oils when each was exposed to different environments for 12 weeks. From this test, some properties including total acid number, water content and dielectric breakdown were changed under specific conditions and resources. Vegetable oils showed higher hydrophilicity and water saturation than those of mineral oils due to their molecular compositions. Under sunlight exposure condition, all insulation oils oxidized and changed their properties when exposing to the direct light, regardless of the resource used.

Physiological Changes of Citrus Leaves as Affected by Petroleum Oil Spray under Different Air Temperature Conditions (다른 온도조건하에서의 Petroleum Spray Oil 살포가 감귤 잎의 생리적 특성에 미치는 영향)

  • 강시용;김판기;류기중
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.175-178
    • /
    • 2001
  • 최근 호주 및 미국의 오렌지나 사과 등의 과수재배에서는 천적과 함께 석유 유래의 petroleum spray oils (PSOs)을 이용한 병해충종합관리(IPM) 체계가 적극적으로 도입되고 있다. PSO 제제는 천적, 인축 및 환경잔류 독성이 낮으며 해충에 대해서는 호흡곤란 및 기피작용에 의한 방제효과로 약제저항성을 유발시키지 않는다는 장점이 있으나 식물독성 유발의 위험성 때문에 이용의 확대가 제한되었다.(중략)

  • PDF

Determination of Visible Marker in Petroleum Using HPLC (HPLC를 이용한 석유제품 내의 가시적 식별제 분석)

  • Lim, Young-Kwan;Kim, Dong-Kil;Yim, Eui-Soon;Shin, Seong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.306-310
    • /
    • 2010
  • Petroleum visible markers (dye) have been used to distinguish different fuel classes and to prevent illegal mixing. It is difficult to recognize the real color of visible marker when the small amount of petroleum product was mixed in another fuel oil. In this study, we determined the two wavelengths (370 nm, 645 nm) which detect all Korean petroleum visible marker using UV/Vis spectrophotometer. Then we analyzed the visible marker using high performance liquid chromatography (HPLC) in two wavelength detectors. Also, we optimized the analytic method for petroleum visible marker in illegal mixed fuel oil.

Study on combustion and emission characteristics of chars from low-temperature and fast pyrolysis of coals with TG-MS

  • Liu, Lei;Gong, Zhiqiang;Wang, Zhenbo;Zhang, Haoteng
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.522-528
    • /
    • 2020
  • To achieve the clean and efficient utilization of low-rank coal, the combustion and pollutant emission characteristics of chars from low-temperature and fast pyrolysis in a horizontal tube furnace were investigated in a TG-MS analyzer. According to the results, the combustion characteristic of chars was poorer than its parent coals. The temperature range of gaseous product release had a good agreement with that of TGA weight loss. Gaseous products of samples with high content of volatile were released earlier. The NO and NO2 emissions of chars were lower than their parent coals. Coals of high rank (anthracite and sub-bituminous) released more NO and NO2 than low rank coals of lignite, so were chars from coals of different ranks. SO2 emissions of char samples were lower than parent coals and did not show obvious relationship with coal ranks.

Parameters study on lateral buckling of submarine PIP pipelines

  • Zhang, Xinhu;Duan, Menglan;Wang, Yingying;Li, Tongtong
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.99-115
    • /
    • 2016
  • In meeting the technical needs for deepwater conditions and overcoming the shortfalls of single-layer pipes for deepwater applications, pipe-in-pipe (PIP) systems have been developed. While, for PIP pipelines directly laid on the seabed or with partial embedment, one of the primary service risks is lateral buckling. The critical axial force is a key factor governing the global lateral buckling response that has been paid much more attention. It is influenced by global imperfections, submerged weight, stiffness, pipe-soil interaction characteristics, et al. In this study, Finite Element Models for imperfect PIP systems are established on the basis of 3D beam element and tube-to-tube element in Abaqus. A parameter study was conducted to investigate the effects of these parameters on the critical axial force and post-buckling forms. These parameters include structural parameters such as imperfections, clearance, and bulkhead spacing, pipe/soil interaction parameter, for instance, axial and lateral friction properties between pipeline and seabed, and load parameter submerged weight. Python as a programming language is been used to realize parametric modeling in Abaqus. Some conclusions are obtained which can provide a guide for the design of PIP pipelines.

해외석유정보

  • Korea Petroleum Association
    • Korea Petroleum Association Journal
    • /
    • no.11 s.245
    • /
    • pp.87-96
    • /
    • 2004
  • 본란은 해외석유산업에 대한 동향과 정보를 파악하기 위하여 석유협회 홈페이지(www.oil.or.kr)에서 연재중인 석유정보다이제스트 내용을 발췌하여 실은 것이다.

  • PDF

영국의 가짜 석유제품 및 불법거래 현황

  • Korea Petroleum Association
    • Korea Petroleum Association Journal
    • /
    • no.1 s.252
    • /
    • pp.67-70
    • /
    • 2006
  • 본란은 해외석유산업에 대한 동향과 정보를 파악하기 위하여 석유협회 홈페이지(www.oil.or.kr)에서 연재중인 석유정보다이제스트 내용을 발췌하여 실은 것이다.-편집자 주-

  • PDF