References
- Wang M, Li Z, Huang W, Yang J, Xue H. Coal pyrolysis characteristics by TG-MS and its late gas generation potential. Fuel 2015;156:243-253. https://doi.org/10.1016/j.fuel.2015.04.055
- Russell NV, Beeley TJ, Man CK, Gibbins JR, Williamson J. Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes. Fuel Proc. Technol. 1998;57:113-130. https://doi.org/10.1016/S0378-3820(98)00077-0
- Shaw KJ, Beamish BB, Rodgers KA. Thermogravimetric analytical procedures for determining reactivities of chars from New Zealand coals. Thermochim. Acta. 1997;302:181-187. https://doi.org/10.1016/S0040-6031(97)00234-7
- Rong H, Sato JI, Chen Q, Chen C. Thermogravimetric analysis of char combustion. Combust. Sci. Technol. 2002;174:1-18.
- Basil BB, Shaw KJ, Rodgers KA, Newman J. Thermogravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal. Fuel Proc. Technol. 1998;53:243-253. https://doi.org/10.1016/S0378-3820(97)00073-8
- Arenillas A, Rubiera F, Pis JJ, Jones JM, Williams A. The effect of the textural properties of bituminous coal chars on NO emissions. Fuel 1999;78:1779-1785. https://doi.org/10.1016/S0016-2361(99)00127-1
- Arenillas A, Pevida C, Rubiera F, GarciA R, Pis JJ. Characterisation of model compounds and a synthetic coal by TG/MS/FTIR to represent the pyrolysis behaviour of coal. J. Anal. Appl. Pyrol. 2004;71:747-763. https://doi.org/10.1016/j.jaap.2003.10.005
- Gong Z, Liu Z, Zhou T, Lu Q, Sun Y. Combustion and NO emission of Shenmu Char in a 2 MW circulating fluidized bed. Energ. Fuels 2015;29:1219-1226. https://doi.org/10.1021/ef502768w
- Gong Z, Xia H, Liu Z, Lu Q. TG-MS Study on Coal/Char combustion by equivalent characteristic spectrum analysis. In: Clean Coal Technology and Sustainable Development. Berlin:Springer; 2015.
- Wang S, Tang Y, Schobert HH, Guo Yn, Gao W, Lu X. FTIR and simultaneous TG/MS/FTIR study of late permian coals from Southern China. J. Anal. Appl. Pyrol. 2013;100:75-80. https://doi.org/10.1016/j.jaap.2012.11.021
- Zou C, Wu H, Zhao J, Li X. Effects of dust collection from converter steelmaking process on combustion characteristics of pulverized coal. Powder Technol. 2018;332:70-78. https://doi.org/10.1016/j.powtec.2018.03.012
- Zhao Z, Wang R, Ge L, Wu J, Yin Q, Wang C. Energy utilization of coal-coking wastes via coal slurry preparation: The characteristics of slurrying, combustion, and pollutant emission. Energy 2019;168:609-618. https://doi.org/10.1016/j.energy.2018.11.141
- Mehmood MA, Ahmad MS, Liu Q, et al. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study. Energ. Convers. Manage. 2019;194:37-45. https://doi.org/10.1016/j.enconman.2019.04.076
- Lu C, Wang X, Li R, et al. Emissions of fine particulate nitrated phenols from residential coal combustion in China. Atmos. Environ. 2019;203:10-17. https://doi.org/10.1016/j.atmosenv.2019.01.047
- Hu G, Liu G, Wu D, Fu B. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion. Fuel 2018;233:361-376. https://doi.org/10.1016/j.fuel.2018.06.069
- Oliveira MLS, Boit KD, Pacheco F, et al. Multifaceted processes controlling the distribution of hazardous compounds in the spontaneous combustion of coal and the effect of these compounds on human health. Environ. Res. 2018;160:562. https://doi.org/10.1016/j.envres.2017.08.009
- Liu Z, Wang G, Li P, Li C. Investigation on combustion of high-sulfur coal catalyzed with industrial waste slags. J. Energ. Inst. 2019;92:621-629. https://doi.org/10.1016/j.joei.2018.03.010
- Li Z, Jiang L, Ouyang J, Cao L, Luo G, Yao H. A kinetic study on char oxidation in mixtures of O2, CO2 and H2O. Fuel Proc. Technol. 2018;179:250-257. https://doi.org/10.1016/j.fuproc.2018.07.007
- Wang L, Su S, Qing M, et al. Melting solidification and leaching behaviors of V/As during co-combustion of the spent SCR catalyst with coal. Fuel 2019;252:164-171. https://doi.org/10.1016/j.fuel.2019.03.150
- Guo F, Zhong Z. Optimization of the co-combustion of coal and composite biomass pellets. J. Clean. Prod. 2018;185:399-407. https://doi.org/10.1016/j.jclepro.2018.03.064
- Jiang Y, Zong P, Tian B, et al. Pyrolysis behaviors and product distribution of Shenmu coal at high heating rate: A study using TG-FTIR and Py-GC/MS. Energ. Convers. Manage. 2019;179:72-80. https://doi.org/10.1016/j.enconman.2018.10.049
- Salema AA, Ting RMW, Shang YK. Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS. Bioresour. Technol. 2019;274:439-446. https://doi.org/10.1016/j.biortech.2018.12.014
- Zhu Y, Wen W, Li Y, et al. Pyrolysis study of Huainan coal with different particle sizes using TG analysis and online Py-PI-TOF MS. J. Energ. Inst. 2019.
- Jayaraman K, Kok MV, Gokalp I. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS. Appl. Therm. Eng. 2017;125:1446-1455. https://doi.org/10.1016/j.applthermaleng.2017.07.128
- Fang P, Gong Z, Wang Z, Wang Z, Meng F. Study on combustion and emission characteristics of microalgae and its extraction residue with TG-MS. Renew. Energ. 2019;140:884-894. https://doi.org/10.1016/j.renene.2019.03.114
- Lin Y, Liao Y, Yu Z, Fang S, Ma X. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS. Energ. Convers.Manage. 2017;151:190-198. https://doi.org/10.1016/j.enconman.2017.08.062
- Li R, Chen Q, Xia H. Study on pyrolysis characteristics of pretreated high-sodium (Na) Zhundong coal by skimmer-type interfaced TG-DTA-EI/PI-MS system. Fuel Proc. Technol. 2018;170:79-87. https://doi.org/10.1016/j.fuproc.2017.10.023
- Gong Z, Wang Z, Wang Z, Fang P, Meng F. Study on the migration characteristics of nitrogen and sulfur during co-combustion of oil sludge char and microalgae residue. Fuel 2019;238:1-9. https://doi.org/10.1016/j.fuel.2018.10.087
- Wang Z, Gong Z, Wang Z, Fang P, Han D. A TG-MS study on the coupled pyrolysis and combustion of oil sludge. Thermochim. Acta. 2018;663:137-144. https://doi.org/10.1016/j.tca.2018.03.019
- Luo L, Liu J, Zhang H, Ma J, Wang X, Jiang X. TG-MS-FTIR study on pyrolysis behavior of superfine pulverized coal. J. Anal. Appl. Pyrol. 2017;128:64-74. https://doi.org/10.1016/j.jaap.2017.10.024
- Jayaraman K, Kok MV, Gokalp I. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renew. Energ. 2017;101:293-300. https://doi.org/10.1016/j.renene.2016.08.072
Cited by
- Characterization of Oxygen-Containing Aromatics in a Low-Temperature Coal Tar vol.35, pp.1, 2021, https://doi.org/10.1021/acs.energyfuels.0c02571
- Investigation on the Distribution of Yimin Lignite Pyrolysis Products and the Stability of its Char vol.6, pp.22, 2020, https://doi.org/10.1021/acsomega.0c05204