• Title/Summary/Keyword: petroleum hydrocarbon

Search Result 263, Processing Time 0.017 seconds

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Degradation Kinetic and Mechanism of Methyl Tert-butyl Ether (MTBE) by the Modified Photo-Fenton Reaction (Modified Photo-Fenton Reaction을 이용한 Methyl Tert-butyl Ether (MTBE)의 분해 Kinetic 및 메커니즘 규명에 관한 연구)

  • Kim, Min-Kyoung;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.69-75
    • /
    • 2006
  • Improper disposal of petroleum and spills from underground storage tanks have created large areas with highly toxic contamination of the soil and groundwater. Methyl tert-butyl ether (MTBE) is widely used as a fuel additive because of its advantageous properties of increasing the octane value and reducing carbon monoxide and hydrocarbon exhausts. However, MTBE is categorized as a possible human carcinogen. This research investigated the Modified Photo-Fenton system which is based on the Modified Fenton reaction and UV light irradiation. The Modified Fenton reaction is effective for MTBE degradation near a neutral pH, using the ferric ion complex composed of a ferric ion and environmentally friendly organic chelating agents. This research was intended to treat high concentrations of MTBE; thus, 1,000 mg/L MTBE was chosen. The objectives of this research are to find the optimal reaction conditions and to elucidate the kinetic and mechanism of MTBE degradation by the Modified Photo-Fenton reaction. Based on the results of experiments, citrate was chosen among eight chelating agents as the candidate for the Modified Photo-Fenton reaction because it has a relatively higher final pH and MTBE removal efficiency than the others, and it has a relatively low toxicity and is rapidly biodegradable. MTBE degradation was found to follow pseudo-first-order kinetics. Under the optimum conditions, [$Fe^{3+}$] : [Citrate] = 1 mM: 4 mM, 3% $H_2O_2$, 17.4 kWh/L UV dose, and initial pH 6.0, the 1000 ppm MTBE was degraded by 86.75% within 6 hours and 99.99% within 16 hours. The final pH value was 6.02. The degradation mechanism of MTBE by the Modified Photo-Fenton Reaction included two diverse pathways and tert-butyl formate (TBF) was identified to be the major degradation intermediate. Attributed to the high solubility, stability, and reactivity of the ferric-citrate complexes in the near neutral condition, this Modified Photo-Fenton reaction is a promising treatment process for high concentrations of MTBE under or near a neutral pH.

Clinical investigation of lipoid pneumonia in adults (성인에서 발생한 지방성 폐렴의 임상적 고찰)

  • Hyun, Jae Geun;Rhee, Chong H.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.965-975
    • /
    • 1996
  • Background : Exogenous lipoid pneumonia is caused by inhalation or aspiration of animal, vegetable or mineral oil. Most cases are ascribed to aspiration of oil in laxatives or nose drops Petroleum, another pure hydrocarbon used as a base in various medications, is occasionally involved. Especially animal oil produces severe tissue inflammatory reaction, but most patients present with only abnormal chest X-ray and no specific clinical symptoms or signs. Method: Seven patients, 3 males and 4 females, with exogenous lipoid pneumonia, who was hospitalized or referred to pulmonary division at Samsung Medical Center from December 1994 10 July 1996, were included. They hadn a history of laking shark liver oil(so-called "squalene") for varying period of time. We reviewed clinical, radioloic and pathologic findings. Result: Patients look 7 to 30 capsules of "squalene" a day for at least one month to 5 years. Six cases had chronic disease such as diabetes, hypertension, or cerebrovascular accident. Respiratory symptoms of mild fever, cough and sputum were present in 3 cases and in 3 cases there was no clinical symptoms and signs but abnormal findings by chest X - ray. The major radiologic findings by simple chest X - ray and computed tomography consisted of consolidation, infiltration involving mainly right middle and both lower lobes, and ground-glass opacity. Five of six bronchoscopic examinations demonstrated both lipid droplets floating on the surface of bronchoalveolar lavage fluid and Lipid-laden macrophages in bronchoalveolar lavage fluid or lung tissue. Follow-up chest X -ray showed improvement in 4 cases but no marked interval change in 3 cases after removal of exposure to "squalene". Conclusion: Shark liver oil can induce lipoid pneumonia in adults. In case of high clinical suspicion, confirmation of "squalene" use by careful history taking is required and bronchoscopy is helpful in diagnosis.

  • PDF