• Title/Summary/Keyword: pet fashion

Search Result 114, Processing Time 0.03 seconds

Characteristics of Rustling Sound of Laminated Fabric Utilizing Nano-web (나노웹을 이용한 라미네이트소재의 마찰음 특성)

  • Jeong, Tae-Young;Lee, Eu-Gene;Lee, Seung-Sin;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.15 no.4
    • /
    • pp.620-629
    • /
    • 2013
  • This study examines the rustling sound characteristics of electrospun nanofiber web laminates according to layer structures. This study assesses mechanical properties and frictional sounds (such as SPL); in addition, Zwicker's psychoacoustic parameters (such as Loudness (Z), Sharpness (Z), Roughness (Z), and Fluctuation strength (Z)) were calculated using the Sound Quality Program (ver.3.2, B&K, Denmark). The result determined how to control these characteristics and minimize rustling sounds. A total of 3 specimens' frictional sound (generated at 0.63 m/s) was recorded using a Simulator for Frictional Sound of Fabrics (Korea Patent No. 10-2008-0105524) and SPLs were analyzed with a Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured with a KES-FB system. The SPL value of the sound spectrum showed 6.84~58.47dB at 0~17,500Hz. The SPL value was 61.2dB for the 2-layer PU nanofiber web laminates layered on densely woven PET(C1) and was the highest at 65.1dB for the 3-layer PU nanofiber web laminates (C3). Based on SPSS 18.0, it was shown that there is a correlation between mechanical properties and psychoacoustic characteristics. Tensile properties (LT), weight (T), and bending properties (2HB) showed a high correlation with psychoacoustic characteristics. Tensile linearity (LT) with Loudness (Z) showed a negative correlation coefficient; however, weight (T) with Sharpness (Z) and Roughness (Z), and bending hysteresis (2HB) with Roughness (Z) indicated positive correlation coefficients, respectively.

Dyeing of Soybean Fabrics using Charcoals (숯을 이용한 대두직물의 염색)

  • Lee, Sol;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.531-539
    • /
    • 2016
  • Charcoal dyed fabrics have been widely used in home textiles and functional clothing due to their anti-statics, antibacterial, deodorization, far infrared emitting and anion releasing. Soybean fiber were regenerated from soybean. Soybean fiber have biodegradable, microbiocidal, non-allergic, and anti-ageing properties. The purpose of this study is to investigate the dyeing characteristics of soybean fabric using charcoal as colorants. Soybean fabrics were dyed with charcoal solution according to concentration of charcoal, dyeing temperature, and dyeing time. To improve washing fastness and investigate mordanting condition, soybean fabric and dyed soybean fabric with charcoal were mordanted by mordanting agents such as $CH_3COOH$(acetic acid), NaCl(sodium chloride) and $AlK(SO_4)_2{\cdot}12H_2O$(Aluminium Potassium Sulfate). Dyeability and color characteristics of charcoal dyed soybean fabric were obtained by computer color matching and SEM morphology analysis. Particle size of charcoal and color fastness were also investigated. The results obtained were as follows; Mean average diameter of charcoal was $1.39{\mu}m$. The dyeability of soybean fabric using charcoal as colorants was increased gradually with increasing concentration of charcoal dyeing solution and saturated at about 8%(o.w.b.). The optimum dyeing temperature and dyeing time were $90{\sim}105^{\circ}C$ and 60~90 minutes respectively. The overall wash fastness at dyeing concentration 2~4%(o.w.b.) and 6~10%(o.w.b.) were 4 degree and 3-4 degree respectively. The fastness to washing according to mordanting method indicated good grade result as more than 4 degree in all conditions. On the other hand, the staining of adjacent fabrics, i.e. PET, Acryl, Wool, Acetate, Nylon and Cotton was found to be of grade 4 or 4-5 in all conditions.

Content Description on a Mobile Image Sharing Service: Hashtags on Instagram

  • Dorsch, Isabelle
    • Journal of Information Science Theory and Practice
    • /
    • v.6 no.2
    • /
    • pp.46-61
    • /
    • 2018
  • The mobile social networking application Instagram is a well-known platform for sharing photos and videos. Since it is folksonomy-oriented, it provides the possibility for image indexing and knowledge representation through the assignment of hashtags to posted content. The purpose of this study is to analyze how Instagram users tag their pictures regarding different kinds of picture and hashtag categories. For such a content analysis, a distinction is made between Food, Pets, Selfies, Friends, Activity, Art, Fashion, Quotes (captioned photos), Landscape, and Architecture image categories as well as Content-relatedness (ofness, aboutness, and iconology), Emotiveness, Isness, Performativeness, Fakeness, "Insta"-Tags, and Sentences as hashtag categories. Altogether, 14,649 hashtags of 1,000 Instagram images were intellectually analyzed (100 pictures for each image category). Research questions are stated as follows: RQ1: Are there any differences in relative frequencies of hashtags in the picture categories? On average the number of hashtags per picture is 15. Lowest average values received the categories Selfie (average 10.9 tags per picture) and Friends (average 11.7 tags per picture); for highest, the categories Pet (average 18.6 tags), Fashion (average 17.6 tags), and Landscape (average 16.8 tags). RQ2: Given a picture category, what is the distribution of hashtag categories; and given a hashtag category, what is the distribution of picture categories? 60.20% of all hashtags were classified into the category Content-relatedness. Categories Emotiveness (about 4.38%) and Sentences (0.99%) were less often frequent. RQ3: Is there any association between image categories and hashtag categories? A statistically significant association between hashtag categories and image categories on Instagram exists, as a chi-square test of independence shows. This study enables a first broad overview on the tagging behavior of Instagram users and is not limited to a specific hashtag or picture motive, like previous studies.

Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode (심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조)

  • Kim, Jae-Hyun;Yang, Hyuk-Joo;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.

A Study on the Application of Medical Compression Arm Sleeves Using a MRT(Moisture Responded Transformable) Fibers (MRT(Moisture Responded Transformable)섬유의 의료용 압박소매 적용에 관한 연구)

  • Cho, Daehyun;Jung, Taedu;Park, Eunhee;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.87-95
    • /
    • 2021
  • In this study, the application of a medical compression sleeve of Moisture Responded Transformable(MRT) fibers to the treatment of lymphedema after surgery in breast cancer patients was investigated. MRT fibers were manufactured with PET and Nylon6 bi-component cross-section yarns, and compression sleeves of sleeves 1, 2, 3, and 4 were knitted in order of size, and then the physical properties and clinical tests were evaluated. As a result, the pressure of compression sleeve in wrinkle was the lowest in sleeve 1 with 3.81 kPa, and the highest in sleeve 4 with 5.22 kPa. Elastic recovery rate is that all parts except the top of the sleeve 1 exhibited 100%. The air permeability was good at 12.1 ~ 16.1 cm3/cm2/sec, and peeling was also comparatively excellent as grade 3. In addition, the weight of the compression sleeves 1, 2, and 3 decreased as 18.3 ~ 23.0 g/m2 depend on size, while the compared sample was heavier with 17.39 ~ 32.61 g/m2. In lymphoscintigraphy test, it was confirmed that the function of remaining lymph node was good in all patients. Although there were no differences between samples in skin irritation and tightness in wearing comfort, the manufactured sleeves showed better fit, lightness, fashion and breathability than the comparable sleeves.

Moisture Transmission Characteristics of Fabric for High Emotional Garments -Moisture Transmission Characteristics according to Fiber Properties, Yarn Characteristics and Test Method- (고감성 의류용 직물의 수분이동특성 -섬유소재와 실 특성 및 실험방법에 따른 수분이동특성-)

  • Kim, SeungJin;Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.28-42
    • /
    • 2017
  • Moisture transfer characteristics of high emotional garments are important to evaluate wear comfort. Wicking and drying measurement methods are also critical for perspiration absorption and quick dry fabric made of high functional fibers. In this study, the wicking and drying properties of high emotional fabrics made from hybrid composite yarns using CoolMax, Tencel, Bamboo staple fibers and PP. PET CoolMax filaments were also measured and analyzed according to various measuring methods. The wicking property of hybrid composite yarn fabrics by Bireck method was mostly influenced by the structure of hybrid yarns than the absorption rate of constituent fibers; however, both the hygroscopicity of fibers and the composite yarn structure affected the wicking property of the fabrics in the drop method. Concerning drying properties, the KSK 0815B method measuring distilled moisture weight was more relevant to explain the drying characteristics of hybrid yarn fabrics than the KSK 0815A method measuring the time to drying. This study revealed that the drying properties of hybrid yarn fabrics were influenced by the hygroscopicity of constituent fibers, wicking properties of constituent yarns and structure of composite yarns.

Effect of Porosity Characteristics of Hollow Composite Yarns to the Comfort Property of the Fabrics for the High Emotional Garment (중공 복합사 직물의 기공도 특성이 고감성 의류용 직물의 쾌적특성에 미치는 영향)

  • Kim, Hyun Ah;Kim, Young Soo;Kim, Seung Jin
    • Textile Coloration and Finishing
    • /
    • v.26 no.3
    • /
    • pp.218-229
    • /
    • 2014
  • The wearing comfort of garment is governed by two kinds of characteristics such as moisture and thermal transport properties and mechanical properties of fabrics. The porosity influenced by yarn and fabric structural parameters is known as main factor for wearing comfort of garment related to the moisture and thermal transport properties. This study investigated effect of porosity of composite yarns to the moisture and thermal comfort properties of composite fabrics made of hollow composite DTY and ATY yarns. The theoretical porosity and pore size were inversely proportional to cover factor of fabric, but cover factor was not correlated with experimental pore size. The wicking property of hydrophobic PET filament fabric showed inferior result irrespective of porosity, pore size and cover factor. The drying rate was superior at composite fabrics with high pore size and low cover factor, and pore size was dominant factor for drying property. On the other hand, thermal conductivity of composite fabric was mainly influenced by cover factor and not influenced by porosity. Air permeability was influenced by both porosity and cover factor and was highly increased with increasing porosity and decreasing fabric cover factor.

The Changes of Appearance Formability of Hanji Blended Fabrics after Fusing (한지사 혼용 직물의 접착심 접착 후 외관 형성능의 변화)

  • Jee, Ju-Won
    • Human Ecology Research
    • /
    • v.59 no.1
    • /
    • pp.13-21
    • /
    • 2021
  • In order to examine the changes in the appearance properties and the post-adhesion appearance properties of Hanji yarn blended fabrics : 100% Hanji yarn fabric, two kinds of cotton / Hanji yarn blended fabrics and 100% cotton fabric, were selected and fused with three kinds of interlinings. After fusing, changes of standardized KES values were examined. 1. W/T, B/W of Hanji yarn blended fabrics was higher than that cotton fabric. WC/W, 2HB/W, 2HB/B, and 2HG/G values of Hanji yarn blended fabrics are lower than cotton fabric. This means that the Hanji yarn was mixed, shape retention, wrinkle recovery was improved, and the drape property was lowered. 2. After fusing, W/T, shape retention, wrinkle recovery of Hanji yarn blended fabrics increased, and WC/W values of Hanji yarn blended fabrics decreased. The wrinkle recovery property of Hanji yarn blended fabrics were improved; however, the 2HG/G value of Hanji yarn fabric increased due to fusing, and the wrinkle recovery property of Hanji yarn fabric decreased. 3. In the selection of adhesive core, I1 adhesive core is excellent in terms of shape stability and wrinkle recovery; however, an I3 adhesive core is recommended for drape and silhouette formation. When the fabric of the adhesive core was PET, it was found to penetrate better between the fabrics during adhesion than the case of cotton fabrics.

Structural Characteristics and Maintenance Mechanism of Ulmus pumila Community at the Dong River, Gangwon-do, South Korea

  • Choung, Heung-Lak;Kim, Chul-Hwan;Yang, Keum-Chul;Chun, Jae-In;Roh, Huan-Chuen
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.255-261
    • /
    • 2003
  • To analyze ecological characteristics of the Ulmus pumila community, an on-the-spot survey was conducted in August, 1998 in the Dong River, Gangwon-do, South Korea. The Ulmus pumila community is partially distributed in Dong River's midstream and upper stream. Topographical characteristics of this community are significant in the point bar or sandbank of the river. The community is classified into two types, disturbed and non-disturbed types, by the effect of flooding. The Ulmus pumila community (bush forests of Siberian elms) is a representative community which forms riparian forests, but its distribution is rare in South Korea. Only in Dong River is the Ulmus pumila distributed enough to form a community, and none is known that is lager than this community in South Korea. The non-disturbance type progresses more homogeneously than the disturbance type because it is formed on riverside banks where it is affected less by flooding. We concluded that the Ulmus pumila community in this study area has characteristics of riparian forests. In South Korea, Ulmus pumila community can be regarded as important element of vegetation landscape constituting riparian forests. Specifically, these riparian forests are evaluated as high in conservation value due to their being formed spontaneously. Moreover, Dong River is regarded as the southern limit of Ulmus pumila, which has a northern origin. The species or community needs continuous interests and conservation countermeasures because there are limitations in its spread of distribution by natural or artificial efforts.

Bedding Fabric Performance Using Polyester, Tencel and Cotton MVS Blended Spun Yarns (PET, Tencel, Cotton MVS 혼방사로 제직된 침구용 직물의 성능평가)

  • Sa, A-Na;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • This study evaluated the performance of bedding fabrics consisting of warp (150d/144f, polyester) and weft (polyester, Tencel and cotton MVS blended spun yarn) with blend ratio of weft. We measured electrostatic propensity, moisture properties, pilling properties and mechanical properties of the fabrics for this study. F-P fabric showed outstanding moisture properties and pilling properties. However, tensile properties and electrostatic propensity were relatively inferior to other characteristic values. Significant static electricity may make F-P fabric uncomfortable. F-P7C3 fabric showed outstanding moisture properties and pilling properties. Static electricity may make F-P7C3 fabric uncomfortable; in addition, F-P5C5 fabric showed outstanding moisture properties and pilling properties. Rough and stiff hand feel were expected to increase because tensile properties decreased and surface properties increased. F-C fabric showed outstanding pilling properties and electrostatic propensity. However, it showed inferior moisture control properties. F-P5T4C1 fabric showed outstanding moisture properties, pilling properties and electrostatic propensity. Several properties are outstanding; however, the hand feels are very rough and stiff from bending. The water evaporation and static electricity increased with increasing polyester content. As the content of cotton increased, tensile properties were improved. However, water evaporation and static electricity decreased. The addition of Tencel increased the thickness and compression energy so that it exhibited a soft characteristic upon compression and an excellent moisture control properties, but the surface became somewhat coarse.