• Title/Summary/Keyword: pesticide residue limit

Search Result 177, Processing Time 0.021 seconds

Residual Characteristics of Insecticide Acetamiprid in Asparagus under Greenhouse Condition (시설재배 아스파라거스 중 살충제 acetamiprid의 잔류특성)

  • Kim, Jiwon;Lee, Jungmin;Lee, Doseung;Kang, Seungtae;Kim, Dae-Woon;Lee, Dong-Sun;Riu, Key-Zung;Boo, Kyung Hwan
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.204-209
    • /
    • 2015
  • This study was carried out to investigate residual characteristics of insecticide acetamiprid in asparagus under greenhouse condition from July to August and consequentially to obtain basic data for guideline on safe use of this pesticide in asparagus. Residues of acetamiprid in young stem of asparagus before and after removing foliage were analyzed from samples harvested at 0, 1, 3, 5 and 7 days after single application before harvest. As a result, residues of acetamiprid in young stem of asparagus before and after removing foliage at 0 day were 0.27 mg/kg and 0.14 mg/kg, respectively, which were higher than tentative limit (0.1 mg/kg). However, 3 days later residues of acetamiprid were lower than the tentative limit, representing 0.08 mg/kg and 0.03 mg/kg in the asparagus before and after removing foliage, respectively. Acetamiprid was undetectable in both samples at 5 days since the concentrations were less than detection limit (0.02 mg/kg) in this study. In summary, the half-life of acetamiprid in asparagus regardless of removing foliage was quite short under greenhouse condition from July to August, in the range of 1-3 days, and single application of acetamiprid water dispersible granule in/on asparagus at 7 days before harvest would have no problem on safety issues about pesticide residue. This result might be basic information to construct guideline for safe use of acetamiprid in asparagus.

Development and Validation of an Analytical Method for Determination of Fungicide Benzovindiflupyr in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 벤조빈디플루피르의 잔류시험법 개발 및 검증)

  • Lim, Seung-Hee;Do, Jung-Ah;Park, Shin-Min;Pak, Won-Min;Yoon, Ji Hye;Kim, Ji Young;Chang, Moon-Ik
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.298-305
    • /
    • 2017
  • Benzovindiflupyr is a new pyrazole carboxamide fungicide that inhibits succinate dehydrogenase of mitochondrial respiratory chain. This study was carried out to develop an analytical method for the determination of benzovindiflupyr residues in agricultural commodities using LC-MS/MS. The benzovindiflupyr residues in samples were extracted by using acetonitrile, partitioned with dichloromethane, and then purified with silica solid phase extraction (SPE) cartridge. Correlation coefficient ($r^2$) of benzovindiflupyr standard solution was 0.99 over the calibration ranges ($0.001{\sim}0.5{\mu}g/mL$). Recovery tests were conducted on 5 representative agricultural commodities (mandarin, green pepper, potato, soybean, and hulled rice) to validate the analytical method. The recoveries ranged from 79.3% to 110.0% and then relative standard deviation (RSD) was less than 9.1%. Also the limit of detection (LOD) and limit of quantification (LOQ) were 0.0005 and 0.005 mg/kg, respectively. The recoveries of interlaboratory validation ranged from 83.4% to 117.3% and the coefficient of variation (CV) was 9.0%. All results were followed with Codex guideline (CAC/GL 40) and Ministry of Food and Safety guideline (MFDS, 2016). The proposed new analytical method proved to be accurate, effective, and sensitive for benzovindiflupyr determination and would be used as an official analytical method.

Residual characteristics and processing factors of azoxystrobin during eggplant and lettuce processing (가지와 상추의 가공 중 azoxystrobin의 잔류량 변화 및 가공계수)

  • Kim, Jeong-Ah;Seo, Jeong-A;Lee, Hye-Su;Im, Moo-Hyeog
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • This study was conducted to investigate changes in pesticide residues in eggplant and lettuce during washing and cooking processes after application with azoxystrobin. Eggplant was processed with running washing, steaming, and stir-frying, and lettuce was processed with soaking washing, running washing, soaking and running washing, ultrasonic cleaning, and blanching. The limit of quantitation of GC analysis of azoxystrobin was 0.01 mg/kg and the recovery rate was 84.7-109.5%. The azoxystrobin processing factors (PFs) and reduction rates in eggplant and lettuce were calculated and the results were as follows. In the case of eggplant, the azoxystrobin PF and reduction rate of running washing were 0.29 and 71.1%, respectively, those of steaming were 0.32 and 68.0%, respectively, and those of stir-frying were 0.24 and 75.7%, respectively. In the case of lettuce, the azoxystrobin PF and reduction rate of soaking washing were 0.25, 75.3%, those of running washing were 0.61 and 38.9%, respectively, those of soaking and running washing were 0.32, 68.0%, those of ultrasonic cleaning were 0.47 and 53.1%, respectively, and those of blanching were 0.26 and 73.6%, respectively. It could be identified that pesticide residues in eggplant and lettuce can be effectively reduced through washing and cooking processes and that most of pesticide residues were removed when cooking processes were undergone after washing. Therefore, azoxystrobin PFs after washing and processing can be provided as basic data for risk assessment.

A Survey on the Residual Pesticides on Agricultural Products on the Markets in Incheon from 2016 to 2018 (인천광역시 유통 농산물의 최근 3년간 잔류농약 실태조사)

  • Park, Jeong-Eun;Lee, Mi-Yeon;Kim, Sun-Hoi;Song, Sung-Min;Park, Byung-Kyu;Seo, Soon-Jae;Song, Jae-Yong;Hur, Myong-Je
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.205-212
    • /
    • 2019
  • BACKGROUND: This survey conducted on agricultural products in Incheon for the past three years from 2016 to 2018 to detect residual pesticides and to monitor the use of pesticides. METHODS AND RESULTS: Residual pesticides were analyzed for a total of 5,937 agricultural products in Samsan wholesale market, traditional market and large retailers in Incheon. Samples were analyzed by multi class pesticide method using GC-MS/MS, LC-MS/MS, GC-ECD/NPD, and UHPLC. In 59 cases (1.0%) residual pesticides were detected improperly and these cases exceeded maximum residue limits (MRLs). CONCLUSION: The ratios of violative agricultural products were similar each year at approximately 1.0% per year, but the residual pesticide detection rates with the limit included in the samples were shown to be gradually decreasing to 17.9%, 12.6%, and 11.2% annually. The frequency of violative residual pesticides was high in order of Diazinon, Chlorpyrifos, Iprodione, etc. Residual pesticide monitoring might be needed in the future continuously, as violations in agricultural products distributed in Incheon are shown at a similar level every year.

Dissipation characteristics of mandipropamid and thiamethoxam for establishment of pre-harvest residue limits in lettuce (상추의 생산단계 잔류허용기준 설정을 위한 농약 Mandipropamid 및 Thiamethoxam의 잔류소실특성 연구)

  • Yang, Seung-Hyun;Lee, Jae-In;Choi, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.267-274
    • /
    • 2020
  • The dissipation characteristics and kinetics of fungicide mandipropamid and insecticide thiamethoxam in lettuce under greenhouse conditions were investigated at three different lettuce-growing fields for estimating the pre-harvest residue limits (PHRLs). The analytical methods were fully validated for the quantitation of pesticide residues using High-Performance Liquid Chromatography-Photo Diode Array detector or Ultraviolet-Visible Detector and applied to real samples. The lettuces suitable for shipment were harvested during 10 days including pre-harvest interval after treatment at the recommended dose by safe-use guidelines. The initial mean residues in different fields were 6.68-17.87 and 4.96-8.31 mg/kg for mandipropamid and thiamethoxam, respectively, which decreased to 16-54 and 14-44% in 10 days. The clothianidin, a metabolite of thiamethoxam, was detected in <0.02 to 0.37 mg/kg. The dissipation of both pesticides followed first-order kinetics over a period of 10 days after application. Based on the residue data, the mean dissipation rate constant (λ) and biological half-lives (T1/2) were estimated to be -0.1060 and 6.5 days of mandipropamid and -0.1236 and 5.6 days of thiamethoxam. The PHRLs for lettuce on the 10th and 5th day before harvesting were calculated to be 63.24 and 43.56 mg/kg for mandipropamid, and 44.66 and 25.88 mg/kg for thiamethoxam, with -0.0746 and -0.1091 of the upper 95% confidence intervals of dissipation rate constant, respectively. This work would be useful as guidance for adjusting the shipment date and contribute to stabilizing the income of farmers in Korea.

Development of Individual Residue Analysis Method for Cyanazine in Agricultural Commodities as an Unregistered Herbicide in Korea (국내 미등록 제초제 cyanazine의 농산물 중 개별 잔류분석법 개발)

  • Choung, Myoung-Gun;Im, Moo-Hyeog
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.339-346
    • /
    • 2018
  • Cyanazine is a member of the triazine family of herbicides. Cyanazine is used as a pre- and post-emergence herbicide for the control of annual grasses and broadleaf weeds. This experiment was conducted to establish a determination method for cyanazine, as domestic unregistered pesticide, residue in major agricultural commodities using HPLC-DAD/MS. Cyanazine was extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice and soybean. The extract was diluted with saline water and partitioned to dichloromethane for remove polar extractive in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized florisil column chromatography. On a $C_{18}$ column in HPLC, cyanazine was successfully separated from co-extractives of sample, and sensitively quantitated by diode array detection at 220 nm. Accuracy and precision of the proposed method was validated by the recovery experiment on every major agricultural commodity samples fortified with cyanazine at 3 concentration levels per agricultural commodity in each triplication. Mean recoveries were ranged from 83.6 to 93.3% in five major representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation(LOQ) of cyanazine was 0.02 mg/kg as verified by the recovery experiment. A confirmatory method using LC/MS with selected-ion monitoring(SIM) technique was also provided to clearly identify the suspected residue.

Investigation of Resiudal Organochlorine Pesticides in Green Perilla (Perilla frutescens var. japonica Hara) Greenhouse Soil and Its Leaves (들깨 생산단지 시설재배지 중 잔류성유기염소계 농약류 잔류량 조사)

  • Lim, Sung-Jin;Oh, Young-Tak;Ro, Jin-Ho;Yang, Ji-Yeon;Choi, Geun-Hyoung;Ryu, Song-Hee;Moon, Byeong-Chul;Park, Byung-Jun
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • This study was conducted to investigate residual organochlorine pesticides in green house soil and green perilla leaves. Extraction and clean-up method were developed using the modified QuEChERS method for residual organochlorine pesticides (ROCPs) in soil and green perilla leaves. Recovery and limit of quantitation (LOQ) of ROCPs in greenhouse soil and green perilla leaves were 76.3-113.4 and 79.4-107.3%, 0.03-0.24 and $0.33-0.50{\mu}g/kg$, respectively. Detected ROCPs in greenhouse soil were dieldrin and endosulfan sulfate, the residue were 1.6-9.2 and $22.0-87.8{\mu}g/kg$, respectively. But two pesticides in all green perilla leaf samples were not detected. These results showed that ROCPs residue in greenhouse soil was lower than the level of bioaccumulation occurring.

Monitoring of Ergosterol Biosynthesis Inhibitor (EBI) Pesticide Residues in Commercial Agricultural Products and Risk Assessment (국내 유통 농산물 중 EBI계 농약 모니터링과 위해도 평가)

  • Lee, Hee-Jung;Choe, Won-Jo;Lee, Ju-Young;Cho, Dae-Hyun;Kang, Chan-Soon;Kim, Woo-Seong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1779-1784
    • /
    • 2009
  • Establishment of simultaneous analysis method and monitoring for individually analyzing residual eight ergosterol biosynthesis inhibitors, EBI (difenoconazole, diniconazole, fenarimol, fenbuconazole, hexaconazole, myclobutanil, nuarimol and paclobutrazol) pesticides in commercial agricultural products, were conducted. The simultaneous analysis method for the pesticides was established using a GC/MS/MS for EBI pesticides. Residual amount of those pesticides were investigated in 989 commercial agricultural products (fifteen kinds of cereal grains, vegetables, beans, nuts, fruits and mushrooms) from seven metropolitan cities and eight provinces. In EBI pesticides analysis, linearity of GC/MS/MS analysis was 0.9974-0.9992, and that of recoveries were 86-135% with relative standard deviations (RSD) <20%. The limit of quantification (LOQ) of the method ranged from 0.5 to 5.0 mg/kg for eight EBI pesticides. According to the monitoring of the EBI pesticides in commercial agricultural products, difenoconazole, fenarimol, hexaconazole showed various residual levels (total frequency of 8/989 detection, 0.8%). Paclobutrazole showed in excess levels of the MRLs (maximum residue limits) for pesticides in one chard sample by the Korea Food Code. As a result of exposure assessment on the detected 8 individual pesticides, all pesticides (difenoconazole, fenarimol, hexaconazole, paclobutrazole) were evaluated as safe level in comparison to toxicologically acceptable daily intake.

High-Performance Liquid Chromatographic Determination of Phenothrin and Silafluofen Residues in Crops with Mass Spectrometric Confirmation (고성능 액체크로마토그래피와 질량분석법을 이용한 농산물 중 Phenothrin 및 Silafuofen의 정밀 잔류분석법 개발)

  • Lee, Young-Deuk;Oh, Jae-Ho;Jang, Sang-Won
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.4
    • /
    • pp.389-400
    • /
    • 2011
  • A high-performance liquid chromatographic (HPLC) method was developed to determine residues of phenothrin and silafluofen, known as synthetic pyrethroids, in agricultural commodities. Insecticide residues were extracted with acetone from representative samples of four crops which comprised rice, apple, pepper and cabbage. The extract was purified serially by liquid-liquid partition and Florisil column chromatography. For rice and pepper samples, acetonitrile/n-hexane partition was additionally adopted to remove nonpolar interferences. Reversed phase HPLC using an octadecylsilyl column was successfully applied to separate two phenothrin isomers and silafluofen from sample co-extractives. Intact parent compounds were sensitively detected by ultraviolet absorption at 226 nm. Recovery experiment at the quantitation limit validated that the proposed method could apparently determine phenothrin and silafluofen residues at 0.02 and 0.01 mg/kg, respectively. Mean recoveries of phenothrin and silafluofen from four crop samples fortified at three levels in triplicate were in the range of 82.4~109.8% and 83.7~109.8%, respectively. Relative standard deviations of the analytical method were all less than 10%, irrespective of crop types and spiking levels. A selected-ion monitoring (SIM) LC/mass spectrometry (MS) with electrospray ionization was provided to confirm the suspected residue of phenothrin, even though no sufficient ionization of silafluofen was obtained. Both phenothrin and silafluofen could be successfully confirmed by gas chromatography/MS SIM with electron impact at 70 eV. The proposed method is sensitive, repeatable and rapid enough to apply to officially routine inspection of agricultural products.

Residual Characteristics of Bistrifluron and Chlorantraniliprole in Strawberry (Fragaria ananassa Duch.) for Establishing Pre-Harvest Residue Limit (생산단계 잔류허용기준 설정을 위한 딸기 중 bistrifluron과 chlorantraniliprole의 잔류 특성 연구)

  • Lee, Jae Won;Kim, Ji Yoon;Kim, Hee gon;Hur, Kyung Jin;Kwon, Chan Hyeok;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.57-62
    • /
    • 2017
  • BACKGROUND: Pesticide residue analysis is essentially required for safety evaluation of agricultural products. Bistrifluron and chlorantraniliprole have been currently considered as potentials to deeply evaluate their residues in agricultural products because they are frequently found in strawberry. This work was performed to investigate the residual patterns of bistrifluron and chlorantraniliprole in strawberry after harvest. METHODS AND RESULTS: Strawberry was treated with bistrifluron and chlorantraniliprole 0, 1, 2, 3, 5, 7 and 10 days before harvest under greenhouse conditions. The strawberry samples were subjected to solvent and solid phase extractions followed by LC-MS/MS analysis. There covery percentages of bistrifluron and chlorantraniliprole for tified in the control samples ranged from approximately 82 to 103% with the method limit of 0.005 mg/kg. The concentrations of bistrifluron and chlorantraniliprole in strawberry samples decreased significantly in 10 days after treatment, giving the safety levels of 0.04 to 0.06 mg/kg at 10 days after application, as considered maximum residue limit. The half-lives of bistrifluron and chlorantraniliprole based on first order kinetics were determined to 6.3 days and 6.4 days, respectively. CONCLUSION: Bistrifluron and chlorantraniliprole are suggested to use in strawberry 10 days before harvest to reach residual safety levels.