• Title/Summary/Keyword: perturbation procedure

Search Result 77, Processing Time 0.027 seconds

Sub-degrees of freedom method with perturbation procedure for reduction of eigenvalue computation

  • Liu, Xiao-Lin
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.579-589
    • /
    • 1999
  • A new way to reduce the eigenvalue computation effort in structural dynamics is presented in this paper. The degrees of freedom of a structure may be classified into groups that are termed as sub-degrees of freedom. The eigenvalue analysis is performed with each of sub-degrees of freedom so that the computing time is much shortened. Since the dynamic coupling between sub-degrees of freedom is selected to be small and it may be considered as a perturbation, the perturbation algorithm is used to obtain an accuratae result. The accuracy of perturbation depends on the coupling between sub-degrees of freedom. The weaker the coupling is, the more accurate the result is. The procedure can be used to simplify a problem of three dimensions to that of two dimensions or from two dimensions to one dimension. The application to a truss and a space frame is shown in the paper.

Derivation of formulas for perturbation analysis with modes of close eigenvalues

  • Liu, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.5
    • /
    • pp.427-440
    • /
    • 2000
  • The formulas for the perturbation analysis with modes of close eigenvalues are derived in this paper. Emphasis is made on the consistency of the straightforward perturbation process, given the complete terms of perturbations in the zeroth-order, which is a form of Rayleigh quotient, and in the higher-orders. By dividing the perturbation of eigenvector into two parts, the first-order perturbation with respect to the modes of close eigenvalues is moved into the zeroth-order perturbation. The normality condition is employed to compute the higher-order perturbations of eigenvector. The algorithm can be condensed to a single mode with a distinct eigenvalue, and this can accelerate the convergence of the perturbation analysis. The example confirms that the perturbation approximation obtained from the suggested procedure is in a good accuracy on the eigenvalues, eigenvectors, and normality.

Application of Stochastic Optimization Method to (s, S) Inventory System ((s, S) 재고관리 시스템에 대한 확률최적화 기법의 응용)

  • Chimyung Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.1-11
    • /
    • 2003
  • In this paper, we focus an optimal policy focus optimal class of (s, S) inventory control systems. To this end, we use the perturbation analysis and apply a stochastic optimization algorithm to minimize the average cost over a period. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. Our simulation results indicate that the optimal estimates of s and S obtained from a stochastic optimization algorithm are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and review period. Another directions involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF

Mass perturbation influence method for dynamic analysis of offshore structures

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.429-436
    • /
    • 2002
  • The current work presents an analysis algorithm for the modal analysis for the dynamic behaviors of offshore structures with concepts of mass perturbation influence term. The mass perturbation concept by using the term, presented in this paper offers an efficient solution procedure for dynamical response problems of offshore structures. The basis of the proposed method is the mass perturbation influence concepts associated with natural frequencies and mode shapes and mass properties of the given structure. The mathematical formulation of the mass perturbation influence method is described. New solution procedures for dynamics analysis are developed, followed by illustrative example problems, which deal with the effectiveness of the new solution procedures for the dynamic analysis of offshore structures. The solution procedures presented herein is compact and computationally simple.

A Role of Local Influence in Selecting Regressors

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.267-272
    • /
    • 2006
  • A procedure for selecting regressors in the linear regression model is suggested using local influence approach. Under an appropriate perturbation scheme, the effect of perturbation of regressors on the profile log-likelihood displacement is assessed for variable selection. A numerical example is provided for illustration.

Pole Preservation under Perturbation (동요 아래에서의 극점의 보존)

  • Kim, Hyoung Joong;Kim, Gi Taek
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.27-31
    • /
    • 1991
  • Consider a problem to keep half of the poles unchanged when some of the coefficients of stable characteristic polynomials are perturbed. A procedure was proposed for the problem. However, the pole assignment procedure has not been addressed. A simple algorithm for the procedure is proposed in this paper.

  • PDF

Optimal Policy for (s, S) Inventory System Characterized by Renewal Arrival Process of Demand through Simulation Sensitivity Analysis (수요가 재생 도착과정을 따르는 (s, S) 재고 시스템에서 시뮬레이션 민감도 분석을 이용한 최적 전략)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.3
    • /
    • pp.31-40
    • /
    • 2003
  • This paper studies an optimal policy for a certain class of (s, S) inventory control systems, where the demands are characterized by the renewal arrival process. To minimize the average cost over a simulation period, we apply a stochastic optimization algorithm which uses the gradients of parameters, s and S. We obtain the gradients of objective function with respect to ordering amount S and reorder point s via a combined perturbation method. This method uses the infinitesimal perturbation analysis and the smoothed perturbation analysis alternatively according to occurrences of ordering event changes. The optimal estimates of s and S from our simulation results are quite accurate. We consider that this may be due to the estimated gradients of little noise from the regenerative system simulation, and their effect on search procedure when we apply the stochastic optimization algorithm. The directions for future study stemming from this research pertain to extension to the more general inventory system with regard to demand distribution, backlogging policy, lead time, and inter-arrival times of demands. Another direction involves the efficiency of stochastic optimization algorithm related to searching procedure for an improving point of (s, S).

  • PDF

Characteristics of Dynamic Postural Control in Anteroposterior Perturbation of a Platform (전후방향의 플랫폼 이동에 대한 동적균형 회복 특성)

  • 태기식;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1066-1069
    • /
    • 2002
  • Dynamic postural control varies with the environmental context, specific task and intentions of the subject. In this paper, dynamic postural control against forward-backward perturbations of a platform was estimated using tri-axial accelerometers and a force plate. Ten young healthy volunteers stood upright in comfortable condition on the perturbation system which was controlled by an AC servo motor. With anterior-posterior perturbations, movements of ankle, knee and hip Joints were obtained by tri-axial accelerometers. and ground reaction forces with corresponding displacements of the center of pressure(CoP) by the force plate. The result showed that the ankle moved first and the trunk forward, which implies that the mechanism of the dynamic postural control in forward-backward perturbations, occurred in the procedure of the ankle, the knee and the hip. Knee flexion and hip extension in the period of acceleration, constant velocity and deceleration phase is very important fur the balance recovery. These responses depends on the magnitude and timing of the perturbation. From the present study the accelerometry-system appears to be a promising tool for understanding kinematic accelerative In response to a transient platform perturbation. A more through understanding of balance recovery mechanism may aid in designing methods for reducing falls and the resulting injuries.

  • PDF

Damage Estimation of Structures by Second Order Modal Perturbation (2차 모우드 섭동법에 의한 구조물의 손상도 추정)

  • 홍규선;윤정방;류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.119-126
    • /
    • 1992
  • Most civil engineering structures such as bridges, power plants, and offshore platforms are apt to suffer structural damages over their service lives caused by adverse loadings, such as earthquakes, wind and wave forces. Accumulation of structural damages over a long period of time might cause catastrophic structural failure. Therefore, a methodology for monitoring the structural integrity is essential for assuring the safety of the existing structures. A method for the damage assessment of structures by the second order inverse modal perturbation technique is presented in this paper. Perturbation equation consists of a matrix equation involving matrices of structural changes(stiffness and mass matrix changes) and matrices of modal property changes(natural frequency and mode shape changes). The damages of a structure are represented as changes in the stiffness matrix. In this study, a second order perturbation equation is formulated for the damage assessment of structures, and solved by an iterative procedure. The effectiveness of the proposed method has been investigated through a series of example analysis. The estimated results for the structural damage indicated that the present method yields resonable estimates for the structural changes.

  • PDF

Stochastic bending characteristics of finite element modeled Nano-composite plates

  • Chavan, Shivaji G.;Lal, Achchhe
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • This study reported, the effect of random variation in system properties on bending response of single wall carbon nanotube reinforced composite (SWCNTRC) plates subjected to transverse uniform loading is examined. System parameters such as the SWCNT armchair, material properties, plate thickness and volume fraction of SWCNT are modelled as basic random variables. The basic formulation is based on higher order shear deformation theory to model the system behaviour of the SWCNTRC composite plate. A C0 finite element method in conjunction with the first order perturbation technique procedure developed earlier by the authors for the plate subjected to lateral loading is employed to obtain the mean and variance of the transverse deflection of the plate. The performance of the stochastic SWCNTRC composite model is demonstrated through a comparison of mean transverse central deflection with those results available in the literature and standard deviation of the deflection with an independent First Order perturbation Technique (FOPT), Second Order perturbation Technique (SOPT) and Monte Carlo simulation.