• Title/Summary/Keyword: perturbation analysis

Search Result 637, Processing Time 0.025 seconds

Perturbation method for the dynamic analysis of a bistable oscillator under slow harmonic excitation

  • Luongo, Angelo;Casciati, Sara;Zulli, Daniele
    • Smart Structures and Systems
    • /
    • v.18 no.1
    • /
    • pp.183-196
    • /
    • 2016
  • In this paper a nonlinear, bistable, single degree of freedom system is considered. It consists of a Duffing oscillator externally excited by a non-resonant, harmonic force. A customized perturbation scheme is proposed to achieve an approximate expression for periodic solutions. It is based on the evaluation of the quasi-steady (slow) solution, and then on a variable change followed by two perturbation steps which aim to capture the fast, decaying contribution of the response. The reconstructed solution, given by the sum of the slow and fast contributions, is in a good agreement with the one obtained by numerical integration.

Analytical solution for free vibration of multi-span continuous anisotropic plates by the perturbation method

  • Liu, Jiepeng;Cao, Liang;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.283-291
    • /
    • 2019
  • Accurately determining the natural frequencies and mode shapes of a structural floor is an essential step to assess the floor's human-induced vibration serviceability. In the theoretical analysis, the prestressed concrete floor can be idealized as a multi-span continuous anisotropic plate. This paper presents a new analytical approach to determine the natural frequencies and mode shapes of a multi-span continuous orthotropic plate. The suggested approach is based on the combined modal and perturbation method, which differs from other approaches as it decomposes the admissible functions defining the mode shapes by considering the intermodal coupling. The implementation of this technique is simple, requiring no tedious mathematical calculations. The perturbation solution is validated with the numerical results.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Damage Estimation of Structures by Second Order Modal Perturbation (2차 모우드 섭동법에 의한 구조물의 손상도 추정)

  • 홍규선;윤정방;류정선
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.119-126
    • /
    • 1992
  • Most civil engineering structures such as bridges, power plants, and offshore platforms are apt to suffer structural damages over their service lives caused by adverse loadings, such as earthquakes, wind and wave forces. Accumulation of structural damages over a long period of time might cause catastrophic structural failure. Therefore, a methodology for monitoring the structural integrity is essential for assuring the safety of the existing structures. A method for the damage assessment of structures by the second order inverse modal perturbation technique is presented in this paper. Perturbation equation consists of a matrix equation involving matrices of structural changes(stiffness and mass matrix changes) and matrices of modal property changes(natural frequency and mode shape changes). The damages of a structure are represented as changes in the stiffness matrix. In this study, a second order perturbation equation is formulated for the damage assessment of structures, and solved by an iterative procedure. The effectiveness of the proposed method has been investigated through a series of example analysis. The estimated results for the structural damage indicated that the present method yields resonable estimates for the structural changes.

  • PDF

An Analysis of Effects of Water Perturbation Exercise on Physiological Cost Index and Gait Ability in Stroke Patients (수중 동요 훈련이 뇌졸중 환자의 생리학적 소비지수와 보행 능력에 미치는 효과 분석)

  • Park, Seungkyu;Park, Samheon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • PURPOSE : This study attempts to find the effects of water perturbation exercise performed on stroke patients in their physiological cost index and gait ability tests. METHOD : The subjects were 30 stroke patients, water perturbation exercise group was performed 3 day per week, for 40 minutes a day, for a period of eight weeks. The physiological cost index and gait of all subjects were assessed by using the polar, 6 Minute Walk Test (6MWT), and 10 meter Walk Test(10mWT) at pre training and post training. Paired t-test was used to analyze change before and after intervention in group. Pearson's correlation was used to analyze correlation of all variables. RESULT : Water perturbation exercise group showed increased physiological cost index. Water perturbation exercise increased gait ability, showing a significant difference. Showing the correlation between the relatively high amount between physiological cost index and 6 minutes walking test. CONCLUSION : From the result of the study, we found that water perturbation exercise was effective in improving physiological cost index and gait ability. The patient is considered to be used by itself to involve the treatment and the risk of falling from the lowered state into the treatment method for the intensive treatment of stroke patients to be useful in improving the cardiovascular system and ability to walk. Through underwater training for stroke patients in the future on the basis of this study it is considered to require additional clinical studies on the impact on daily living and quality of life of stroke patients.

The Utility of Perturbation, Non-linear dynamic, and Cepstrum measures of dysphonia according to Signal Typing (음성 신호 분류에 따른 장애 음성의 변동률 분석, 비선형 동적 분석, 캡스트럼 분석의 유용성)

  • Choi, Seong Hee;Choi, Chul-Hee
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.63-72
    • /
    • 2014
  • The current study assessed the utility of acoustic analyses the most commonly used in routine clinical voice assessment including perturbation, nonlinear dynamic analysis, and Spectral/Cepstrum analysis based on signal typing of dysphonic voices and investigated their applicability of clinical acoustic analysis methods. A total of 70 dysphonic voice samples were classified with signal typing using narrowband spectrogram. Traditional parameters of %jitter, %shimmer, and signal-to-noise ratio were calculated for the signals using TF32 and correlation dimension(D2) of nonlinear dynamic parameter and spectral/cepstral measures including mean CPP, CPP_sd, CPPf0, CPPf0_sd, L/H ratio, and L/H ratio_sd were also calculated with ADSV(Analysis of Dysphonia in Speech and VoiceTM). Auditory perceptual analysis was performed by two blinded speech-language pathologists with GRBAS. The results showed that nearly periodic Type 1 signals were all functional dysphonia and Type 4 signals were comprised of neurogenic and organic voice disorders. Only Type 1 voice signals were reliable for perturbation analysis in this study. Significant signal typing-related differences were found in all acoustic and auditory-perceptual measures. SNR, CPP, L/H ratio values for Type 4 were significantly lower than those of other voice signals and significant higher %jitter, %shimmer were observed in Type 4 voice signals(p<.001). Additionally, with increase of signal type, D2 values significantly increased and more complex and nonlinear patterns were represented. Nevertheless, voice signals with highly noise component associated with breathiness were not able to obtain D2. In particular, CPP, was highly sensitive with voice quality 'G', 'R', 'B' than any other acoustic measures. Thus, Spectral and cepstral analyses may be applied for more severe dysphonic voices such as Type 4 signals and CPP can be more accurate and predictive acoustic marker in measuring voice quality and severity in dysphonia.

Vibration analysis of a uniform beam traversed by a moving vehicle with random mass and random velocity

  • Chang, T.P.;Liu, M.F.;O, H.W.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.6
    • /
    • pp.737-749
    • /
    • 2009
  • The problem of estimating the dynamic response of a distributed parameter system excited by a moving vehicle with random initial velocity and random vehicle body mass is investigated. By adopting the Galerkin's method and modal analysis, a set of approximate governing equations of motion possessing time-dependent uncertain coefficients and forcing function is obtained, and then the dynamic response of the coupled system can be calculated in deterministic sense. The statistical characteristics of the responses of the system are computed by using improved perturbation approach with respect to mean value. This method is simple and useful to gather the stochastic structural response due to the vehicle-passenger-bridge interaction. Furthermore, some of the statistical numerical results calculated from the perturbation technique are checked by Monte Carlo simulation.

Robust Adaptive Control of Autonomous Robot Systems with Dynamic Friction Perturbation and Its Stability Analysis (동적마찰 섭동을 갖는 자율이동 로봇 시스템의 강인적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents a robust adaptive control method using model reference control strategy against autonomous robot systems with random friction nature. We approximate a nonlinear robot system model by means of a feedback linearization approach to derive nominal control law. We construct a Least Square (LS) based observer to estimate friction dynamics online and then represent a perturbed system model with respect to approximation error between an actual friction and its estimation. Model reference based control design is achieved to implement an auxiliary control in order for reducing control error in practice due to system perturbation. Additionally, we conduct theoretical study to demonstrate stability of the perturbed system model through Lyapunov theory. Numerical simulation is carried out for evaluating the proposed control methodology and demonstrating its superiority by comparing it to a traditional nominal control method.

Application of Perturbation Method to the Dynamic Analysis of Free-free Beam (자유-자유보의 동적해석에 대한 섭동법의 적용)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.300-306
    • /
    • 2004
  • This paper is concerned with the application of perturbation method to the dynamic analysis of free-free beam. In general, the rigid-body motions and elastic vibrations are analyzed separately. However, the rigid-body motions cause vibrations and elastic vibrations also affect rigid-body motions in turn, which indicates that the rigid-body motions and elastic vibrations are coupled in nature. The resulting equations of motion are hybrid and nonlinear. We can discretize the equations of motion by means of admissible functions but still we have to cope with nonlinear equations. In this paper, we propose the use of .perturbation method to the coupled equations of motion. The resulting equations consist of zero-order equations of motion which depict the rigid-body motions and first-order equations of motion which depict the perturbed rigid-body motions and elastic vibrations. Numerical results show the efficacy of the proposed method.

  • PDF

Precise Braking Torque Control for Momentum Flywheels Based on a Singular Perturbation Analysis

  • Zhou, Xinxiu;Su, Dan
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.953-962
    • /
    • 2017
  • Momentum flywheels are widely applied for the generation of small and precise torque for the attitude control and inertial stabilization of satellites and space stations. Due to its inherited system nonlinearity, the tracking performance of the flywheel torque/speed in dynamic/plug braking operations is limited when a conventional controller is employed. To take advantage of the well-separated two-time-scale quantities of a flywheel driving system, the singular perturbation technique is adopted to improve the torque tracking performance. In addition, the composite control law, which combines slow- and fast- dynamic portions, is derived for flywheel driving systems. Furthermore, a novel control strategy for plug braking dynamics, which considers couplings between the Buck converter and the three-phase inverter load, is designed with easy implementation. Finally, experimental results are presented to demonstrate the correctness of the analysis and the superiority of the proposed methods.